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Abstract. This paper is an abstracted version of the EuLisp definition. As such it
emphasizes those parts of the language that we consider the most important or note-
worthy, while we just mention, without much detail the elements that are included for
completeness. This is reflected in the structure of the paper which describes the module
scheme, the object system and support for concurrent execution in the main part and
consigns the majority of the datatypes to an appendix.

1. Introduction

EuLisp is a dialect of Lisp and as such owes much to the great body of work
that has been done on language design in the name of Lisp over the last
thirty years. The distinguishing features of EuLisp are (i) the integration
of the classical Lisp type system and the object system into a single class
hierarchy (ii) the complementary abstraction facilities provided by the class
and the module mechanism (iii) support for concurrent execution.

Here is a brief summary of the main features of the language.

• Classes are first-class objects. The class structure integrates the prim-
itive classes describing fundamental datatypes, the predefined classes
and user-defined classes.

• Modules together with classes are the building blocks of both the
EuLisp language and of applications written in EuLisp. The module
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system exists to limit access to objects by name. That is, modules
allow for hidden definitions. Each module defines a fresh, empty,
lexical environment.

• Multiple control threads can be created in EuLisp and the concur-
rency model has been designed to allow consistency across a wide
range of architectures. Access to shared data can be controlled via
locks (semaphores). Event-based programming is supported through
a generic waiting function.

• Both functions and continuations are first-class in EuLisp, but the
latter are not as general as in Scheme because they can only be used
in the dynamic extent of their creation. That implies they can only
be used once.

• A condition mechanism which is fully integrated with both classes
and threads, allows for the definition of generic handlers and which
supports both propagation of conditions and continuable handling.

• Dynamically scoped bindings can be created in EuLisp, but their
use is restricted, as in Scheme. EuLisp enforces a strong distinc-
tion between lexical bindings and dynamic bindings by requiring the
manipulation of the latter via special forms.

EuLisp does not claim any particular Lisp dialect as its closest relative,
although parts of it were influenced by features found in Common Lisp,
InterLISP, LE-LISP, LISP/VM, Scheme, and T. EuLisp both introduces new
ideas and takes from these Lisps. It also extends or simplifies their ideas
as necessary. But this is not the place for a detailed language comparison.
That can be drawn from the rest of this text.

EuLisp breaks with LISP tradition in describing all its types (in fact,
classes) in terms of an object system. This is called The EuLisp Object
System, or TELOS. TELOS incorporates elements of the Common Lisp Object
System (CLOS) [2], ObjVLisp [7], Oaklisp [9], MicroCeyx [5], and MCS [3].

1.1. Language Structure

The EuLisp definition comprises the following items:

Level-0 comprises all the level-0 functions, macros and special forms,
which is this text minus Appendix B. The object system can be
extended by user-defined structure classes, and generic functions.

Level-1 extends level-0 with the functions, macros and special forms de-
fined in Appendix B. The object system can be extended by user-
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defined classes and metaclasses. The implementation of level-1 is not
necessarily written or writable as a conforming level-0 program.

A level-0 function is a (generic) function defined in this text to be part
of a conforming processor for level-0. A function defined in terms of level-0
operations is an example of a level-0 application.

Much of the functionality of EuLisp is defined in terms of modules.
These modules might be available (and used) at any level, but certain
modules are required at a given level. Whenever a module depends on the
operations available at a given level, that dependency will be specified.

EuLisplevel-0 is provided by the module eulisp-level-0. This module
imports and re-exports the modules specified in Table 1.

Table 1: Modules comprising eulisp-level-0

Module Section(s)
character A.1
collection A.2
compare A.3
condition 9
convert A.4
copy A.5
double-float A.6
elementary-functions A.7
event 10.7
fixed-precision-integer A.9
formatted-io A.8
function 10.3
lock 8.2
null A.10
number A.11
object-0 7
pair A.12
stream A.13
string A.14
symbol A.15
syntax-0 10.8
table A.16
thread 8.1
vector A.17
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This definition is organized in three parts:

Sections 5–10 describes the core of level-0 of EuLisp, covering modules,
simple classes, objects and generic functions, threads, conditions, con-
trol forms and events. These sections contain the information about
EuLisp that characterizes the language.

Appendix A describes the additional classes required at level-0 and the
operations defined on instances of those classes. The appendix is
organized by class in alphabetical order. These sections contain in-
formation about the predefined classes in EuLisp that are necessary
to make the language usable, but is not central to an appreciation of
the language.

Appendix B describes the reflective aspects of the object system and
how to program the metaobject protocol and some additional con-
trol forms.

Prior to these, sections 2–4 define the scope of the text and error definitions
and typographical and layout conventions used in this text.

2. Scope

This text specifies the syntax and semantics of the computer programming
language EuLisp by defining the requirements for a conforming EuLisp

processor and a conforming EuLisp program (the textual representation of
data and algorithms).

This text does not specify:

1. The size or complexity of a EuLisp program that will exceed the
capacity of any specific configuration or processor, nor the actions to
be taken when those limits are exceeded.

2. The minimal requirements of a configuration that is capable of sup-
porting an implementation of a EuLisp processor.

3. The method of preparation of a EuLisp program for execution or the
method of activation of this EuLisp program once prepared.

4. The method of reporting errors, warnings or exceptions to the client
of a EuLisp processor.

5. The typographical representation of a EuLisp program for human
reading.
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6. The means to map module names to the filing system or other object
storage system attached to the processor.

To clarify certain instances of the use of English in this text the following
definitions are provided:

must a verbal form used to introduce a required property. All conforming
processors must satisfy the property.

should A verbal form used to introduce a strongly recommended property.
Implementors of processors are urged (but not required) to satisfy the
property.

3. Error Definitions

Errors in the language described in this definition fall into one of the fol-
lowing three classes:

dynamic error: An error which is detected during the execution of a
EuLisp program or which is a violation of the defined dynamic behaviour
of EuLisp. Dynamic errors have two classifications:

1. Where a conforming processor is required to detect the erroneous sit-
uation or behaviour and report it. This is signified by the phrase
an error is signalled. The condition class to be signalled is speci-
fied. Signalling an error consists of identifying the condition class
related to the error and allocating an instance of it. This instance
is initialized with information dependent on the condition class. A
conforming EuLisp program can rely on the fact that this condition
will be signalled.

2. Where a conforming processor might or might not detect and report
upon the error. This is signified by the phrase . . . is an error. A
processor should provide a mode where such errors are detected and
reported where possible.

environmental error: An error which is detected by the configuration
supporting the EuLisp processor. The processor must signal the corre-
sponding dynamic error which is identified and handled as described above.

static error: An error which is detected during the preparation of a Eu-

Lisp program for execution, such as a violation of the syntax or static
semantics of EuLisp by the program under preparation.
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NOTE — The violation of the syntactic or static semantic requirements is not
an error, but an error might be signalled by the program performing the analysis
of the EuLisp program.

All errors specified in this definition are dynamic unless explicitly stated
otherwise.

4. Conventions

This section defines the conventions employed in this text, how definitions
will be laid out, the typeface to be used, the meta-language used in de-
scriptions and the naming conventions. Appendix (C) contains a glossary
of definitions used in this text.

4.1. Layout and Typography

Both layout and fonts are used to help in the description of EuLisp. A
language element is defined as an entry with its name as the heading of a
clause, coupled with its classification. Examples of several kinds of entry
are now given. Some subsections of entries are optional and are only given
where it is felt necessary.

a-special-form special form

Syntax

(a-special-form form1 . . . formn)

Arguments

form1 : description of structure and rôle of form1.
...

formn : description of structure and rôle of formn.

Result

A description of the result.

Remarks

Any additional information defining the behaviour of a-special-form.

Examples

Some examples of use of the special form and the behaviour that should
result.
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See also:

Cross references to related entries.

a-function function

Arguments

argument-a : information about the class or classes of argument-a.
...

[argument-n] : information about the class or classes of the optional argu-
ment argument-n.

Result

A description of the result and, possibly, its class.

Remarks

Any additional information about the actions of a-function.

Examples

Some examples of calling the function with certain arguments and the
result that should be returned.

See also:

Cross references to related entries.

a-generic generic function

Generic Arguments

(argument-a <class-a>) : means that argument-a of a-generic must be
an instance of <class-a> and that argument-a is one of the arguments
on which a-generic specializes. Furthermore, each method defined
on a-generic may specialize only on a subclass of <class-a> for
argument-a.
...

argument-n : means that (i) argument-n is an instance of <object>, i.e. it
is unconstrained, (ii) a-generic does not specialize on argument-n,
(iii) no method on a-generic can specialize on argument-n.
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Result

A description of the result and, possibly, its class.

Remarks

Any additional information about the actions of a-generic. This will
probably be in general terms, since the actual behaviour will be determined
by the methods.

See also:

Cross references to related entries.

a-generic method

(A method on a-generic with the following specialized arguments.)

Specialized Arguments

(argument-a <class-a>) : means that argument-a of the method must be
an instance of <class-a>. Of course, this argument must be one
which was defined in a-generic as being open to specialization and
<class-a> must be a subclass of the class.
...

argument-n : means that (i) argument-n is an instance of <object>, i.e. it
is unconstrained, (ii) a-generic does not specialize on argument-n,
(iii) no method on a-generic can specialize on argument-n.

Result

A description of the result and, possibly, its class.

Remarks

Any additional information about the actions of this method attached to
a-generic.

See also:

Cross references to related entries.



AN OVERVIEW OF EuLisp 9

<a-condition> a-condition-superclass

Init-options

initarg-a value-a : means that an instance of <a-condition> has a slot
called initarg-a which should be initialized to value-a, where value-
a is often the name of a class, indicating that value-a should be an
instance of that class and a description of the information that value-
a is supposed to provide about the exceptional situation that has
arisen.
...

initarg-n value-n : As for initarg-a.

Remarks

Any additional information about the circumstances in which the condi-
tion will be signalled.

<class-name> class

Init-options

initarg-a value-a : means that <class-name> has an initarg whose name
is initarg-a and the description will usually say of what class (or
classes) value-a should be an instance. This initarg is required.
...

[initarg-n value-n] : The enclosing square brackets denote that this ini-
targ is optional. Otherwise the interpretation of the definition is as
for initarg-a.

Remarks

A description of the rôle of <class-name>.

4.2. Meta-Language

The terms used in the following descriptions are defined in Appendix C.

A standard function denotes an immutable top-lexical binding of the
defined name. All the definitions in this text are bindings in some module
except for the special form operators, which have no definition anywhere.
All bindings and all the special form operators can be renamed.
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NOTE — A description making mention of “an x” where “x” is the name a
class usually means “an instance of <x>”.

Frequently, a class-descriptive name will be used in the argument list of
a function description to indicate a restriction on the domain to which that
argument belongs. In the case of a function, it is an error to call it with a
value outside the specified domain. A generic function can be defined with
a particular domain and/or range. In this case, any new methods must
respect the domain and/or range of the generic function to which they are
to be attached. The use of a class-descriptive name in the context of a
generic function definition defines the intention of the definition, and is not
necessarily a policed restriction.

If it is required to indicate repetition, the notation: expression∗ and
expression+ will be used for zero or more and one or more occurrences,
respectively. The arguments in some function descriptions are enclosed in
square brackets—graphic representation “[” and “]”. This indicates that
the argument is optional. The accompanying text will explain what default
values are used.

The result-class of an operation, except in one case, refers to a prim-
itive or a defined class described in this definition. The exception is for
predicates. Predicates are defined to return either the empty list—written
()—representing the boolean value false, or any value other than (), rep-
resenting true. Although the class containing exactly this set of values is
not defined in the language, notation is abused for convenience and boolean
is defined, for the purposes of this report, to mean that set of values. If the
true value is a useful value, it is specified precisely in the description of the
function.

5. Syntax

Case is distinguished in each of characters, strings and identifiers, so that
variable-name and Variable-name are different, but where a character
is used in a positional number representation (e.g. \#x3Ad) the case is
ignored. Thus, case is also significant in this definition and, as will be
observed later, all the special form and standard function names are lower
case. In this section, and throughout this text, the names for individual
character glyphs are those used in ISO/IEC DIS 646:1990.

The minimal character set to support EuLisp is defined in Table 2. The
language as defined in this text uses only the characters given in this table.
Thus, left hand sides of the productions in this table define and name
groups of characters which are used later in this definition: digit, upper,
lower, other, special and alpha.
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Table 2: Minimal character set

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
upper ::= A | B | C | D | E | F | G | H | I | J | K | L | M |

N | O | P | Q | R | S | T | U | V | W | X | Y | Z
lower ::= a | b | c | d | e | f | g | h | i | j | k | l | m |

n | o | p | q | r | s | t | u | v | w | x | y | z
other ::= * | / | < | = | > | | + | - | .

special ::= ; | ’ | , | \ | " | # | ( | ) | ‘ |
alert | backspace | delete | formfeed | linefeed | newline
return | space | tab | vertical-tab

alphc ::= upper | lower

5.1. Whitespace and Comments

Whitespace characters are space and newline. The newline character
is also used to represent end of record for configurations providing such
an input model, thus, a reference to newline in this definition should also
be read as a reference to end of record. The only use of whitespace is to
improve the legibility of programs for human readers. Whitespace separates
tokens and is only significant in a string or when it occurs escaped within
an identifier.

A comment is introduced by the comment-begin glyph, called semicolon
(;) and continues up to, but does not include, the end of the line. Hence, a
comment cannot occur in the middle of a token because of the whitespace
in the form of the newline. Thus a comment is equivalent to whitespace.

NOTE — There is no notation in EuLisp for block comments.

5.2. Objects

The syntax of the classes of objects that can be read by EuLisp is defined
in the section of this definition corresponding to the class:

<character> (A.1), <double-float> (A.6),
<fixed-precision-integer> (A.9), <null> (A.10),
<cons> (A.12), <string> (A.14),
<symbol> (A.15), <vector> (A.17).

The syntax for identifiers corresponds to that for symbols.
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6. Modules

The EuLisp module scheme has several influences: LeLisp’s module sys-
tem and module compiler (complice), Haskell, ML [10], MIT-Scheme’s
make-environment and T’s locales.

All bindings of objects in EuLisp reside in some module somewhere.
Also, all programs in EuLisp are written as one or more modules. Almost
every module imports a number of other modules to make its definition
meaningful. These imports have two purposes, which are separated in Eu-

Lisp: firstly the bindings needed to process the syntax in which the module
is written, and secondly the bindings needed to resolve the free variables
in the module after syntax expansion. These bindings are made accessible
by specifying which modules are to be imported for which purpose in a di-
rective at the beginning of each module. The names of modules are bound
in a disjoint binding environment which is only accessible via the module
definition form. That is to say, modules are not first-class. The body of
a module definition comprises a list of directives followed by a sequence of
definitions, expressions and export forms.

The module mechanism provides abstraction and security in a form com-
plementary to that provided by the object system. Indeed, although objects
do support data abstraction, they do not support all forms of information
hiding and they are usually conceptually smaller units than modules. A
module defines a mapping between a set of names and either local or im-
ported bindings of those names. Most such bindings are immutable. The
exception are those bindings created by deflocal which may be modified
by both the defining and importing modules. There are no implicit imports
into a module—not even the special forms are available in a module that
imports nothing. A module exports nothing by default. Mutually referen-
tial modules are not possible because a module must be defined before it
can be used. Hence, the importation dependencies form a directed acyclic
graph.

NOTE— The issue of mutually referential modules will be addressed in a future
version of the full definition of EuLisp.

The processing of a module definition uses three environments, which
are initially empty. These are the top-lexical, the external and the syntax
environments of the module. The top-lexical environment comprises all
the locally defined bindings and all the imported bindings. The external
environment comprises all the exposed bindings—bindings from modules
being exposed by this module but not necessarily imported—and all the
exported bindings, which are either local or imported. Thus, the external
environment might not be a subset of the top-lexical environment because,
by virtue of an expose directive, it can contain bindings from modules
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which have not been imported. This is the environment received by any
module importing this module. The syntax environment comprises all the
bindings available for the syntax expansion of the module. Each binding is
represented as a pair of a local-name and a module-name. It is a static error
if any two instances of local-name in any one of these environments have
different module-names. This is called a name clash. These environments
do not all need to exist at the same time, but it is simpler for the purposes
of definition to describe module processing as if they do.

6.1. Directives

The list of module directives is a sequence of keywords and forms, where
the keywords indicate the interpretation of the forms. This representation
allows for the addition of further keywords at other levels of the definition
and also for implementation-defined keywords. For the keywords given here,
there is no defined order of appearance, nor is there any restriction on the
number of times that a keyword can appear. Multiple occurrences of any of
the directives defined here are treated as if there is a single directive whose
form is the combination of each of the occurrences. This definition describes
the processing of four keywords, which are now described in detail. The
syntax of all the directives is given in Table 3 and an example of their use
appears in Figure 1.

6.1.1. Export Directive

This is denoted by the keyword export followed by a list of names of
top-lexical bindings defined in this module and has the effect of making
those bindings accessible to any module importing this module by adding
them to the external environment of the module. A name clash can arise
in the external environment from interaction with exposed modules.

6.1.2. Import Directive

The purpose of this directive is to specify the imported bindings which
constitute part of the top-lexical environment of a module. These are the
explicit run-time dependencies of the module. Additional run-time depen-
dencies may arise as a result of syntax expansion. These are called implicit
run-time dependencies.

The import directive is a sequence of module-descriptors, being module
names or the filters except, only and rename, which denotes the union
of all the names generated by each element of the sequence. A filter can,
in turn, be applied to a sequence of module descriptors, and so the effect
of different kinds of filters can be combined by nesting them. An import
directive specifies either the importation of a module in its entirety or the
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(defmodule a-module
(import

(module-1 ;;import everything from module-1
(except (binding-a) module-2) ;;all but binding-a from module-2
(only (binding-b) module-3) ;;only binding-b from module-3
(rename
((binding-c binding-d) ;;all of module-4, but exchange
(binding-d binding-c)) ;;the names of binding-c and
module-4)) ;;binding-d

syntax
(syntax-module-1 ;;all of the module syntax-module-1
(rename
((syntax-a syntax-b)) ;;rename the binding of syntax-a
syntax-module-2) ;;of syntax-module-2 as syntax-b

(rename
((syntax-c syntax-a)) ;;rename the binding of syntax-c
syntax-module-3)) ;;of syntax-module-3 as syntax-a

expose
((except (binding-e) module-5) ;;all but binding-e from module-5
module-6) ;;export all of module-6

export
(local-binding-1 ;;and three bindings from this module
local-binding-2
local-binding-3))

...
(export local-binding-4) ;;a fourth binding from this module
...
(export binding-c) ;;the imported binding binding-c
...

)

Figure 1: Example of module directives

selective importation of specified bindings from a module.

In processing import directives, every name should be thought of as a pair
of a module-name and a local-name. Intuitively, a namelist of such pairs is
generated by reference to the module name and then filtered by except,
only and rename. In an import directive, when a namelist has been filtered,
the names are regarded as being defined in the top-lexical environment of
the module into which they have been imported. A name clash can arise
in the top-lexical environment from interaction between different imported
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modules. Elements of an import directive are interpreted as follows:

except Filters the names from each module-descriptor discarding those
specified and keeping all other names. The except directive is conve-
nient when almost all of the names exported by a module are required,
since it is only necessary to name those few that are not wanted to
exclude them.

module-name All the exported names from module-name.

only Filters the names from each module-descriptor keeping only those
names specified and discarding all other names. The only directive is
convenient when only a few names exported by a module are required,
since it is only necessary to name those that are wanted to include
them.

rename Filters the names from each module-descriptor replacing those with
old-name by new-name. Any name not mentioned in the replacement
list is passed unchanged. Note that once a name has been replaced the
new-name is not compared against the replacement list again. Thus,
a binding can only be renamed once by a single rename directive. In
consequence, name exchanges are possible.

6.1.3. Expose Directive

This is denoted by the keyword expose followed by a list of module-
directives. The purpose of this directive is to allow a module to export
subsets of the external environments of various modules without importing
them itself. Processing an expose directive employs the same model as
for imports, namely, a pair of a module-name and a local-name with the
same filtering operations. When the namelist has been filtered, the names
are added to the external environment of the module begin processed. A
name clash can arise in the external environment from interaction with
exports or between different exposed modules. As an example of the use
of expose, a possible implementation of the eulisp-level-0 module is
shown in Figure 2.

It is also meaningful for a module to include itself in an expose directive.
In this way, it is possible to refer to all the bindings in the module being
defined. This is convenient, in combination with except (see Section 6.1.2),
as a way of exporting all but a few bindings in a module, especially if
syntax expansion creates additional bindings whose names are not known,
but should be exported.
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(defmodule eulisp-level-0
(expose

(character collection compare condition convert copy
double-float elementary-functions event formatted-io
fixed-precision-integer function lock null number object-0
pair stream string symbol syntax-0 table thread vector)))

Figure 2: Example module using expose

6.1.4. Syntax Directive

This directive is processed in the same way as an import directive, except
that the bindings are added to the syntax environment. This environment
is used in the second phase of module processing (syntax expansion). These
constitute the dependencies for the syntax expansion of the definitions and
expressions in the body of the module. A name clash can arise in the syntax
environment from interaction between different syntax modules.

It is important to note that special forms are considered part of the
syntax and they may also be renamed.

6.2. Definitions and Expressions

Definitions in a module only contain unqualified names—that is, local-
names, using the above terminology. A top-lexical binding is created ex-
actly once and shared with all modules that import its exported name
from the module that created the binding. A name clash can arise in the
top-lexical environment from interaction between local definitions and be-
tween local definitions and imported modules. Only top-lexical bindings
created by deflocal are mutable—both in the defining module and in any
importing module. It is a static error to modify an immutable binding.
Expressions, that is non-defining forms, are collected and evaluated in or-
der of appearance at the end of the module definition process when the
top-lexical environment is complete—that is after the creation and initial-
ization of the top-lexical bindings. The exception to this is the progn form,
which is descended and the forms within it are treated as if the progn were
not present. Definitions may only appear either at top-level within a mod-
ule definition or inside any number of progn forms. This is specified more
precisely in the grammar for a module given in Table 3.

6.3. Module Processing

The following steps summarize the module definition process:
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directive processing This is described in detail in Section 6.1. This step
creates and initializes the top-lexical, syntax and external environ-
ments.

syntax expansion The body of the module is expanded according to the
operators defined in the syntax environment constructed from the
syntax directive.

NOTE — The semantics of syntax expansion are still under discussion and
will be described fully in a future version of the full EuLisp definition. In
outline, however, it is intended that the mechanism should provide for hy-
genic expansion of forms in such a way that the programmer need have no
knowledge of the expansion-time or run-time dependencies of the syntax
defining module.

static analysis The expanded body of the module is analyzed. Names
referenced in export forms are added to the external environment.
Names defined by defining forms are added to the top-lexical envi-
ronment. It is a static error, if a free identifier in an expression or
defining form does not have a binding in the top-lexical environment.

NOTE — Additional implementation-defined steps may be added here, such
as compilation.

initialization The top-lexical bindings of the module (created above) are
initialized by evaluating the forms in the body of the module in the
order they appear.

NOTE — In this sense, a module can be regarded as a generalization of the
labels form of this and other Lisp dialects.

6.4. Module Definition

defmodule syntax

Syntax

(defmodule module-name (module-directive∗) module-form∗)

The syntax of the elements of a module is given in Table 3.

Arguments

module-name : A symbol used to name the module.

module-directive : A form specifying the exported names, exposed modules,
imported modules and syntax modules used by this module.

module-form∗ : A sequence of defining forms, expressions and export forms.
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Table 3: Module syntax

module-name ::= identifier
module-directive ::= export | expose | import | syntax

module-form ::= export-form | level-0-expression | defining-form
| (progn module-form)

export ::= export (identifier∗)
expose ::= expose (module-descriptor∗)
import ::= import (module-descriptor∗)
syntax ::= syntax (module-descriptor∗)

export-form ::= (export identifier∗)
module-descriptor ::= module-name | module-filter

module-filter ::= except | only | rename
except ::= (except (identifier∗) module-descriptor+)
only ::= (only (identifier∗) module-descriptor+)

rename ::= (rename (rename-pair∗) module-descriptor+)
rename-pair ::= (old-identifier new-identifier)

Remarks

The defmodule form defines a module named by module-name and asso-
ciates the name module-name with a module object in the module binding
environment.

NOTE — Intentionally, nothing is defined about any relationship between mod-
ules and files.

Examples

An example module definition with explanatory comments is given in
Figure 1.

7. Objects

In EuLisp, every object in the system has a specific class. Classes them-
selves are first-class objects. In this respect EuLisp differs from statically-
typed object-oriented languages such as C++ and µCEYX. The EuLisp

object system is called TELOS. The facilities of the object system are split
across the two levels of the definition. Level-0 supports the definition of
generic functions, methods and structures. Level-1 provides the reflective
system which supports the meta-object protocol (MOP), introspection, the
definition of new metaclasses and the specialization of classes other than
structures. Metaclasses control the structure and behaviour of their in-
stances and the representation of their metainstances. Extensions at level-1,
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such as multiple inheritance, support for the change-class functionality
of CLOS, and persistent objects can be supported through metaclasses. In
addition, metaclasses can provide new kinds of classes with reduced power
but increased efficiency; the class <structure-class> is an example. No
metaclass nor any operation which could return a metaclass as a result,
e.g. class-of, are accessible at level-0. That supports the clear distinc-
tion between object level and metaobject level programming required for
many optimizations.

Programs written using TELOS typically involve the design of a class
hierarchy, where each class represents a category of entities in the problem
domain, and a protocol, which defines the operations on the objects in the
problem domain.

A class defines the structure and behaviour of its instances. Structure is
the information contained in the class’s instances and behaviour is the way
in which the instances are treated by the protocol defined for them.

The components of an object are called its slots. Each slot of an object
is defined by its class.

A protocol defines the operations which can be applied to instances of a
set of classes. This protocol is typically defined in terms of a set of generic
functions, which are functions whose application behaviour depends on
the classes of the arguments. The particular class-specific behaviour is
partitioned into separate units called methods. A method is not a function
itself, but is a closed expression which is a component of a generic function.

Generic functions replace the send construct found in many object-
oriented languages. In contrast to sending a message to a particular object,
which it must know how to handle, the method executed by a generic func-
tion is determined by all of its arguments. Methods which specialize on
more than one of their arguments are called multi-methods.

Inheritance is provided through classes. Slots and methods defined for
a class will also be defined for its subclasses but a subclass may specialize
them. In practice, this means that an instance of a class will contain all the
slots defined directly in the class as well as all of those defined in the class’s
superclasses. In addition, a method specialized on a particular class will
be applicable to direct and indirect instances of this class. The inheritance
rules, the applicability of methods and the generic dispatch are described
in detail later in this section.

Classes are defined using the defstruct (7.3) and defcondition (9.1)
defining forms.

Generic functions are defined using the defgeneric defining form, which
creates a named generic function in the top-lexical environment of the mod-
ule in which it appears and generic-lambda, which creates an anonymous
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<object>
<character>
<condition>

...
<function>

<continuation>
<simple-function>
<generic-function>

<list>
<cons>
<null>

<lock>
<number>

<integer>
<float>

<double-float>
<stream>
<string>
<structure>
<symbol>
<table>
<thread>
<vector>

Figure 3: Level-0 initial class hierarchy

generic function. These forms are described in detail later in this section.

Methods can either be defined at the same time as the generic function,
or else defined separately using the defmethod macro, which adds a new
method to an existing generic function. This macro is described in detail
later in this section.

7.1. System Defined Classes

The basic classes of EuLisp are elements of the object system class hi-
erarchy, which is shown in Figure 3. Indentation indicates a subclass rela-
tionship to the class under which the line has been indented, for example,
<condition> is a subclass of <object>. The names given here correspond
to the bindings of names to classes as they are exported from the level-
0 modules. Classes directly relevant to the object system are described
in this section while others are described in corresponding sections, e.g.
<condition> is described in the conditions section.
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In this definition, unless otherwise specified, classes declared to be sub-
classes of other classes may be indirect subclasses. Classes not declared
to be in a subclass relationship are disjoint. Furthermore, unless other-
wise specified, all objects declared to be of a certain class may be indirect
instances of that class.

<object> class

The root of the inheritance hierarchy. <object> defines the basic meth-
ods for initialization and external representation of objects. No initializa-
tion options are specified for <object>.

<structure> class

The default superclass of structure classes. All classes defined using the
defstruct form are direct or indirect subclasses of <structure>. Thus,
this class is specializable by user defined classes at level-0. No initoptions
are specified for <structure>.

<telos-condition> condition

This is the general condition class for conditions arising from operations
in the object system.

7.2. Single Inheritance

TELOS level-0 provides only single inheritance, meaning that a class can
have exactly one direct superclass—but indefinitely many direct subclasses.
In fact, all classes in the level-0 class inheritance tree have exactly one direct
superclass except the root class <object> which has no direct superclass.

Each class has a class precedence list (CPL), a linearized list of all its su-
perclasses, which defines the classes from which the class inherits structure
and behaviour. For single inheritance classes, this list is defined recursively
as follows:

1. the CPL of <object> is a list of one element containing <object>
itself;

2. the CPL of any other class is a list of classes beginning with the class
itself followed by the elements of the CPL of its direct superclass
which is <object> by default.

The class precedence list controls system-defined protocols concerning:
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Table 4: defstruct syntax
class-name ::= identifier

superclass-name ::= {the name of a subclass of <structure>}
slot-spec ::= slot-name | (slot-name slot-option∗)

slot-name ::= identifier
slot-option ::= initarg initarg-name

| initform form
| reader identifier
| writer identifier
| accessor identifier

class-option ::= initargs (initarg-name∗)
| constructor constructor-spec
| predicate identifier

constructor-spec ::= (identifier initarg-name∗)
initarg-name ::= identifier

1. inheritance of slot and class options when initializing a class,

2. method lookup and generic dispatch when applying a generic func-
tion.

7.3. Defining Classes

defstruct defining form

Syntax

(defstruct class-name superclass-name (slot-spec∗) class-option∗)

The syntax of defstruct is defined in Table 4.

Arguments

class-name : A symbol naming a binding to be initialized with the new
structure class. The binding is immutable.

superclass-name : A symbol naming a binding of a class to be used as the
direct superclass of the new structure class.

(slot-spec∗) : A list of slot specifications (see below), comprising either a
slot-name or a list of a slot-name followed by some slot-options.

class-option∗ : A sequence of keys and values (see below) which, taken to-
gether, apply to the class as a whole.
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Remarks

defstruct creates a new structure class. Structure classes support single
inheritance as described above. Neither class redefinition nor changing the
class of an instance is supported by structure classes1.

The slot-options are interpreted as follows:

initarg identifier : The value of this option is an identifier naming a sym-
bol, which is the name of an argument to be supplied in the init-
options of a call to make on the new class. The value of this argument
in the call to make is the initial value of the slot. This option must
only be specified once for a particular slot. The same initarg name
may be used for several slots, in which case they will share the same
initial value if the initarg is given to make. Subclasses inherit the ini-
targ. Each slot must have at most one initarg including the inherited
one. That means, a subclass can not shadow or add a new initarg, if
a superclass has already defined one.

initform form : The value of this option is a form, which is evaluated as
the default value of the slot, to be used if no initarg is defined for the
slot or given to a call to make. The form is evaluated in the lexical
environment of the call to defstruct and the dynamic environment
of the call to make. The form is evaluated each time make is called
and the default value is called for. The order of evaluation of the
initforms in all the slots is determined by initialize. This option
must only be specified once for a particular slot. Subclasses inherit
the initform. However, a more specific form may be specified in a
subclass, which will shadow the inherited one.

reader identifier : The value is the identifier of the variable to which the
reader function will be bound. The binding is immutable. The reader
function is a means to access the slot. The reader function is a func-
tion of one argument, which should be an instance of the new class.
No writer function is automatically bound with this option. This
option can be specified more than once for a slot, creating several
bindings for the same reader function. It is a static error to specify
the same reader, writer, or accessor name for two different slots.

writer identifier : The value is the identifier of the variable to which the
writer function will be bound. The binding is immutable. The writer
function is a means to change the slot value. The creation of the writer

1In combination with the guarantee that the behaviour of generic functions cannot
be modified once it has been defined, due to no support for method removal nor method
combination, this imbues level-0 programs with static semantics.
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is analogous to that of the reader function. The writer function is a
function of two arguments, the first should be an instance of the new
class and the second can be any new value for the slot. This option
can be specified more than once for a slot. It is a static error to
specify the same reader, writer, or accessor name for two different
slots.

accessor identifier : The value is the identifier of the variable to which
the reader function will be bound. In addition, the use of this slot-
option causes the writer function to be associated to the reader via
the setter mechanism. This option can be specified more than once
for a slot. It is a static error to specify the same reader, writer, or
accessor name for two different slots.

The class options are interpreted as follows:

initargs list : The value of this option is a list of identifiers naming sym-
bols, which extend the inherited names of arguments to be supplied
in the init-options of a call to make on the new class. Initargs are
inherited by union. The values of all legal arguments in the call to
make are the initial values of corresponding slots if they name a slot
initarg or are ignored by the default initialize method, otherwise.
This option must only be specified once for a class.

constructor constructor-spec : Creates a constructor function for the new
class. The constructor specification gives the name to which the con-
structor function will be bound, followed by a sequence of legal ini-
targs for the class. The new function creates an instance of the class
and fills in the slots according to the match between the specified
initargs and the given arguments to the constructor function. This
option may be specified any number of times for a class.

predicate identifier : Creates a function which tests whether an object is
an instance of the new class. The predicate specification gives the
name to which the predicate function will be bound. This option
may be specified any number of times for a class.

7.4. Defining Generic Functions and Methods

defgeneric defining form

Syntax

(defgeneric gf-name gen-lambda-list level-0-init-option∗)
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Arguments

gf-name : One of a symbol, or a form denoting a setter function or a con-
verter function.

gen-lambda-list : The parameter list of the generic function, which may be
specialized to restrict the domain of methods to be attached to the
generic function.

level-0-init-option∗ : Options as specified below.

Remarks

This defining form defines a new generic function. The resulting generic
function will be bound to gf-name. The second argument is the formal
parameter list. The method’s specialized lamba list must be congruent to
that of the generic function. Two lambda lists are said to be congruent iff:

1. both have the same number of formal parameters, and

2. if one lambda list has a rest formal parameter then the other lambda
list has a rest formal parameter too, and vice versa.

An error is signalled (condition class: <non-congruent-lambda-lists>) if
any method defined on this generic function does not have a lambda list
congruent to that of the generic function.

An error is signalled (condition class: <incompatible-method-domain>)
if the method’s specialized lambda list widens the domain of the generic
function. In other words, the lambda lists of all methods must specialize
on subclasses of the classes in the lambda list of the generic function.

An error is signalled (condition class: <method-domain-clash>) if any
methods defined on this generic function have the same domain. These
conditions apply both to methods defined at the same time as the generic
function and to any methods added subsequently by defmethod. An init-
option is an identifier followed by a corresponding value. The syntax of
defgeneric is given in Table 5.

An error is signalled (condition class: <no-applicable-method>) if an
attempt is made to apply a generic function which has no applicable meth-
ods for the classes of the arguments supplied.

The init-option is:

method method-spec : This option is followed by a method description. A
method description is a list comprising the specialized lambda list
of the method, which denotes the domain, and a sequence of forms,
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Table 5: defgeneric syntax (level-0)

gf-name ::= identifier | (setter identifier) |
(converter identifier)

gen-lambda-list ::= spec-lambda-list
level-0-init-option ::= method method-description

method-description ::= (spec-lambda-list form∗)
spec-lambda-list ::= (spec-parameter+ [. identifier])
spec-parameter ::= (identifier class-name) | identifier

Table 6: defgeneric rewrite rules

(defgeneric identifier
gen-lambda-list
level-0-init-option∗)

≡ (defconstant identifier
(generic-lambda

gen-lambda-list
level-0-init-option∗))

(defgeneric (setter identifier)
gen-lambda-list
level-0-init-option∗)

≡ ((setter setter) identifier
(generic-lambda

gen-lambda-list
level-0-init-option∗))

(defgeneric (converter identifier)
gen-lambda-list
level-0-init-option∗)

≡ ((setter converter) identifier
(generic-lambda

gen-lambda-list
level-0-init-option∗))

denoting the method body. The method body is closed in the lexical
environment in which the generic function definition appears. This
option may be specified more than once.

The rewrite rules for the defgeneric form are given in Table 6.

Examples

In the following example of the use of defgeneric a generic function
named gf-0 is defined with three methods attached to it. The domain of
gf-0 is constrained to be <object> × <class-a>. In consequence, each
method added to the generic function, both here and later (by defmethod),
must have a domain which is a subclass of <object> × <class-a>, which
is to say that <class-c>, <class-e> and <class-g> must all be subclasses
of <class-a>.
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(defgeneric gf-0 (arg1 (arg2 <class-a>))

method (((m1-arg1 <class-b>) (m1-arg2 <class-c>)) ...)

method (((m2-arg1 <class-d>) (m2-arg2 <class-e>)) ...)

method (((m3-arg1 <class-f>) (m3-arg2 <class-g>)) ...))

See also:

defmethod, generic-lambda.

defmethod macro

Syntax

(defmethod gf-name spec-lambda-list form∗)

Remarks

This macro is used for defining new methods on generic functions. A
new method object is defined with the specified body and with the domain
given by the specialized lambda list. This method is added to the generic
function bound to gf-name, which is an identifier, or a form denoting a
setter function or a converter function. If the specialized-lambda-list is not
congruent with that of the generic function, an error is signalled (condi-
tion class: <non-congruent-lambda-lists>). An error is signalled (con-
dition class: <incompatible-method-domain>) if the method’s specialized
lambda list would widen the domain of the generic function. If there is a
method with the same domain already defined on this gneric function, an
error is signalled (condition class: <method-domain-clash>).

generic-lambda macro

Syntax

(generic-lambda gen-lambda-list level-0-init-option∗)

Remarks

generic-lambda creates and returns an anonymous generic function that
can be applied immediately, much like the normal lambda. The gen-lambda-
list and the init-options are interpreted exactly as for the level-0 definition
of defgeneric.

Examples

In the following example an anonymous version of gf-0 (see defgeneric
above) is defined. In all other respects the resulting object is the same as
gf-0.
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(generic-lambda ((arg1 <object>) (arg2 <class-a>))

method (((m1-arg1 <class-b>) (m1-arg2 <class-c>)) ...)

method (((m2-arg1 <class-d>) (m2-arg2 <class-e>)) ...)

method (((m3-arg1 <class-f>) (m3-arg2 <class-g>)) ...))

See also:

defgeneric.

<no-applicable-method> telos-condition

Init-options

generic function : The generic function which was applied.

arguments list : The arguments of the generic function which was applied.

Remarks

Signalled by a generic function when there is no method which is appli-
cable to the arguments.

<incompatible-method-domain> telos-condition

Init-options

generic function : The generic function to be extended.

method method : The method to be added.

Remarks

Signalled by one of defgeneric, defmethod or generic-lambda if the
domain of the method would not be a subdomain of the generic function’s
domain.

<non-congruent-lambda-lists> telos-condition

Init-options

generic function : The generic function to be extended.

method method : The method to be added.
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Remarks

Signalled by one of defgeneric, defmethod or generic-lambda if the
lambda list of the method is not congruent to that of the generic function.

<method-domain-clash> telos-condition

Init-options

generic function : The generic function to be extended.

methods list : The methods with the same domain.

Remarks

Signalled by one of defgeneric, defmethod or generic-lambda if there
would be methods with the same domain attached to the generic function.

7.5. Specializing Methods

The following two operators are used to specialize more general meth-
ods. The more specialized method can do some additional computation
before calling these operators and can then carry out further computation
before returning. It is an error to use either of these operators outside a
method body. Argument bindings inside methods are immutable. There-
fore an argument inside a method retains its specialized class throughout
the processing of the method.

call-next-method special form

Syntax

(call-next-method)

Result

The result of calling the next most specific applicable method.

Remarks

The next most specific applicable method is called with the same ar-
guments as the current method. An error is signalled (condition class:
<no-next-method>) if there is no next most specific method.
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next-method-p special form

Syntax

(next-method-p)

Result

If there is a next most specific method, next-method-p returns a non-()
value, otherwise, it returns ().

<no-next-method> telos-condition

Init-options

method method : The method which called call-next-method.

operand-list list : A list of the arguments to have been passed to the next
method.

Remarks

Signalled by call-next-method if there is no next most specific method.

7.6. Method Lookup and Generic Dispatch

The system defined method lookup and generic function dispatch is
purely class based. eql methods known from CLOS are excluded.

The application behaviour of a generic function can be described in terms
of method lookup and generic dispatch. The method lookup determines

1. which methods attached to the generic function are applicable to the
supplied arguments, and

2. the linear order of the applicable methods with respect to classes of
the arguments and the argument precedence order.

A class C1 is called more specific than class C2 with respect to C3 iff C1

appears before C2 in the class precedence list (CPL) of C3
2.

2This definition is required when multiple inheritance comes into play. Then, two
classes have to be compared with respect to a third class even if they are not related to
each other via the subclass relationship. Although, multiple inheritance is not provided
at level-0, the method lookup protocol is independent of the inheritance strategy defined
on classes. It depends on the class precedence lists of the domains of methods attached
to the generic function and the argument classes involved.
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Two additional concepts are needed to explain the processes of method
lookup and generic dispatch: (i) whether a method is applicable, (ii) how
specific it is in relation to the other applicable methods. The definitions of
each of these terms is now given.

A method with the domain D1 × . . . × Dm[× <list>] is applicable to
the arguments a1 . . . am[am+1 . . . an] if the class of each argument, Ci, is a
subclass of Di, which is to say, Di is a member of Ci’s class precedence list.

A method M1 with the domain D11× . . .×D1m[× <list>] is more specific
than a method M2 with the domain D21× . . .×D2m[× <list>] with respect
to the arguments a1 . . . am[am+1 . . . an] iff there exists an i ∈ (1 . . . m) so
that D1i is more specific than D2i with respect to Ci, the class of ai, and
for all j = 1 . . . i− 1, D2j is not more specific than D1j with respect to Cj ,
the class of aj .

Now, with the above definitions, we can describe the application be-
haviour of a generic function (f a1 . . . am[am+1 . . . an]):

1. Select the methods applicable to a1 . . . am[am+1 . . . an] from all meth-
ods attached to f.

2. Sort the applicable methods M1 . . . Mk into decreasing order of speci-
ficity using left to right argument precedence order to resolve other-
wise equally specific methods.

3. If call-next-method appears in one of the method bodies, make the
sorted list of applicable methods available for it.

4. Apply the most specific method on a1 . . . am[am+1 . . . an].

5. Return the result of the previous step.

The first two steps are usually called method lookup and the first four are
usually called generic dispatch.

7.7. Creating and Initializing Objects

Objects can be created by calling

• constructors (predefined or user defined) or

• make, the general constructor function or

• allocate, the general allocator function.
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make function

Arguments

class : The class of the object to create.

key1 obj1 ... keyn objn : Initialization arguments.

Result

An instance of class.

Remarks

The general constructor make creates a new object calling allocate and
initializes it by calling initialize. make returns whatever allocate re-
turns as its result.

allocate function

Arguments

class : A structure class.

initlist : A list of initialization arguments.

Result

A new uninitialized direct instance of the first argument.

Remarks

The class must be a structure class, the initlist is ignored. The behaviour
of allocate is extended at level-1 for classes not accessible at level-0. The
level-0 behaviour is not affected by the level-1 extension.

initialize generic function

Generic Arguments

(object <object>) : The object to initialize.

initlist : The list of initialization arguments.

Result

The initialized object.
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Remarks

Initializes an object and returns the initialized object as the result. It is
called by make on a new uninitialized object created by calling allocate.

Users may extend initialize by defining methods specializing on newly
defined classes, which are structure classes at level-0.

initialize method

Specialized Arguments

(object <object>) : The object to initialize.

initlist : The list of initialization arguments.

Result

The initialized object.

Remarks

This is the default method attached to initialize. This method per-
forms the following steps:

1. Checks if the supplied initargs are legal and signals an error otherwise.
Legal initargs are those specified in the class definition directly or
inherited from a superclass. An initarg may be specified as a slot
option or as a class option.

2. Initializes the slots of the object according to the initarg, if supplied,
or according to the most specific initform, if specified. Otherwise,
the slot remains “unbound”.

Legal initargs which do not initialize a slot are ignored by the default
initialize method. More specific methods may handle these initargs
and call the default method by calling call-next-method.

7.8. Accessing Slots

Object components (slots) can be accessed using reader and writer func-
tions (accessors) only. For system defined object classes there are predefined
readers and writers. Some of the writers are accessible using the setter
function. If there is no writer for a slot, its value cannot be changed. When
users define new classes, they can specify which readers and writers should
be accessible in a module and by which binding. Accessor bindings are not
exported automatically when a class (binding) is exported. They can only
be exported explicitly.
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8. Concurrency

The basic elements of parallel processing in EuLisp are processes and mu-
tual exclusion, which are provided by the classes <thread> and <lock>
respectively.

A thread is allocated and initialized, by calling make. The initarg of a
thread specifies the initial function, which is where execution starts the
first time the thread is dispatched by the scheduler. In this discussion four
states of a thread are identified: new, running, aborted and finished. These
are for conceptual purposes only and a EuLisp program cannot distinguish
between new and running or between aborted and finished. (Although
accessing the result of a thread would permit such a distinction retrospec-
tively, since an aborted thread will cause a condition to be signalled on the
accessing thread and a finished thread will not.) In practice, the running
state is likely to have several internal states, but these distinctions and the
information about a thread’s current state can serve no useful purpose to
a running program, since the information may be incorrect as soon as it is
known. The transitions between these states are summarized in Figure 4.
The initial state of a thread is new. The union of the two final states is
known as determined. Although a program can find out whether a thread
is determined or not by means of wait with a timeout of t (denoting a
poll), the information is only useful if the thread has been determined.

A thread is made available for dispatch by starting it, using the function
thread-start, which changes its state from new to running. After running
a thread becomes either finished or aborted. When a thread is finished,
the result of the initial function may be accessed using thread-value. If a
thread is aborted, which can only occur as a result of a signal handled by the
default handler (installed when the thread is created), then thread-value
will signal the condition that aborted the thread on the thread accessing the
value. Note that thread-value suspends the calling thread if the thread
whose result is sought is not determined.

While a thread is running, its progress can be suspended by accessing
a lock, by a stream operation or by calling thread-value on an undeter-
mined thread. In each of these cases, thread-reschedule is called to allow
another thread to execute. This function may also be called voluntarily.
Progress can resume when the lock becomes unlocked, the input/output
operation completes or the undetermined thread becomes determined.

The actions of a thread can be influenced externally by signal. This
function registers a condition to be signalled no later than when the spec-
ified thread is rescheduled for execution—when thread-reschedule re-
turns. The condition must be an instance of thread-condition. Condi-
tions are delivered to the thread in order of receipt. This ordering require-
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Figure 4: State diagram for threads

ment is only important in the case of a thread sending more than one signal
to the same thread, but in other circumstances the delivery order cannot
be verified. A signal on a determined thread has no discernable effect
on either the signalled or signalling thread unless the condition is not an
instance of <thread-condition>, in which case an error is signalled on the
signalling thread. See also Section 9.

A lock is an abstract data type protecting a binary value which denotes
whether the lock is locked or unlocked. The operations on a lock are lock
and unlock. Executing a lock operation will eventually give the calling
thread exclusive control of a lock. The unlock operation unlocks the lock
so that either a thread subsequently calling lock or one of the threads
which has already called lock on the lock can gain exclusive access.

NOTE — It is intended that implementations of locks based on spin-locks,
semaphores or channels should all be capable of satisfying the above description.
However, to be a conforming implementation, the use of a spin-lock must observe
the fairness requirement, which demands that between attempts to acquire the
lock, control must be ceded to the scheduler.

The programming model is that of concurrently executing threads, re-
gardless of whether the configuration is a multi-processor or not, with some
constraints and some weak fairness guarantees.

1. A processor is free to use run-to-completion, timeslicing and/or con-
current execution.
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2. A conforming program must assume the possibility of concurrent ex-
ecution of threads and will have the same semantics in all cases—see
discussion of fairness which follows.

3. The default condition handler for a new thread, when invoked, will
change the state of the thread to aborted, save the signalled condition
and reschedule the thread.

4. A continuation must only be called from within its dynamic extent.
This does not include threads created within the dynamic extent. An
error is signalled (condition class: <wrong-thread-continuation>),
if a continuation is called on a thread other than the one on which it
was created.

5. The lexical environment (inner and top) associated with the initial
function may be shared, as is the top-dynamic environment, but each
thread has a distinct inner-dynamic environment. In consequence,
any modifications of bindings in the lexical environment or in the
top-dynamic environment should be mediated by locks to avoid non-
deterministic behaviour.

6. The creation and starting of a thread represent changes to the state of
the processor and as such are not affected by the processor’s handling
of errors signalled subsequently on the creating/starting thread (c.f.
streams). That is to say, a non-local exit to a point dynamically
outside the creation of the subsidiary thread has no default effect on
the subsidiary thread.

7. The behaviour of i/o on the same stream by multiple threads is un-
defined unless it is mediated by explicit locks.

The parallel semantics are preserved on a sequential run-to-completion
implementation by requiring communication between threads to use only
thread primitives and shared data protected by locks—both the thread
primitives and locks will cause rescheduling, so other threads can be as-
sumed to have a chance of execution.

There is no guarantee about which thread is selected next. However, a
fairness guarantee is needed to provide the illusion that every other thread
is running. A strong guarantee would ensure that every other thread gets
scheduled before a thread which reschedules itself is scheduled again. Such
a scheme is usually called “round-robin”. This could be stronger than the
guarantee provided by a parallel implementation or the scheduler of the
host operating system and cannot be mandated in this definition.
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A weak but sufficient guarantee is that if any thread reschedules infinitely
often then every other thread will be scheduled infinitely often. Hence if
a thread is waiting for shared data to be changed by another thread and
is using a lock, the other thread is guaranteed to have the opportunity to
change the data. If it is not using a lock, the fairness guarantee ensures
that in the same scenario the following loop will exit eventually:

(while (= data 0) (thread-reschedule))

8.1. Threads

The defined name of this module is thread. This section defines the
operations on threads.

<thread> class

The class of all instances of <thread>.

Init-options

init-function fn : an instance of <function> which will be called when
the resulting thread is started by thread-start.

threadp function

Arguments

object : An object to examine.

Result

The supplied argument if it is an instance of <thread>, otherwise ().

thread-reschedule function

This function takes no arguments.

Result

The result is ().

Remarks

This function is called for side-effect only and may cause the thread which
calls it to be suspended, while other threads are run. In addition, if the
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thread’s condition queue is not empty, the first condition is removed from
the queue and signalled on the thread. The resume continuation of the
signal will be one which will eventually call the continuation of the call to
thread-reschedule.

See also:

thread-value, signal and Section 9 for details of conditions and sig-
nalling.

current-thread function

This function takes no arguments.

Result

The thread on which current-thread was executed.

thread-start function

Arguments

thread : the thread to be started, which must be new. If thread is not new,
an error is signalled (condition class: <thread-already-started>).

obj1 . . . objn : values to be passed as the arguments to the initial function
of thread.

Result

The thread which was supplied as the first argument.

Remarks

The state of thread is changed to running. The values obj1 to objn will
be passed as arguments to the initial function of thread.

thread-value function

Arguments

thread : the thread whose finished value is to be accessed.

Result

The result of the initial function applied to the arguments passed from
thread-start. However, if a condition is signalled on thread which is
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handled by the default handler the condition will now be signalled on the
thread calling thread-value—that is the condition will be propagated to
the accessing thread.

Remarks

If thread is not determined, each thread calling thread-value is sus-
pended until thread is determined, when each will either get the thread’s
value or signal the condition.

See also:

thread-reschedule, signal.

wait method

Specialized Arguments

(thread <thread>) : The thread on which to wait.

(timeout <object>) : The timeout period which is specified by one of (),
t, and non-negative integer).

Result

Result is either thread or (). If timeout is (), the result is thread if it is
determined. If timeout is t, thread suspends until thread is determined and
the result is guaranteed to be thread. If timeout is a non-negative integer,
the call blocks until either thread is determined, in which case the result is
thread, or until the timeout period is reached, in which case the result is
(), whichever is the sooner. The units for the non-negative integer timeout
are the number of clock ticks to wait. The implementation-defined constant
ticks-per-second is used to make timeout periods processor independent.

See also:

wait and ticks-per-second (Section 9).

<thread-condition> condition

Init-options

current-thread thread : The thread which is signalling the condition.

Remarks

This is the general condition class for all conditions arising from thread
operations.
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<wrong-thread-continuation> thread-condition

Init-options

continuation continuation : A continuation.

thread thread : The thread on which continuation was created.

Remarks

Signalled if the given continuation is called on a thread other than the
one on which it was created.

<thread-already-started> thread-condition

Init-options

thread thread : A thread.

Remarks

Signalled by thread-start if the given thread has been started already.

8.2. Locks

The defined name of this module is lock.

<lock> class

The class of all instances of <lock>. This class has no init-options. The
result of calling make on <lock> is a new, open lock.

lockp function

Arguments

object : An object to examine.

Result

The supplied argument if it is an instance of lock, otherwise ().

lock function

Arguments

lock : the lock to be acquired.
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Result

The lock supplied as argument.

Remarks

Executing a lock operation will eventually give the calling thread exclu-
sive control of lock. A consequence of calling lock is that a condition from
another thread may be signalled on this thread. Such a condition will be
signalled before lock has been acquired, so a thread which does not handle
the condition will not lead to starvation; the condition will be signalled
continuably so that the process of acquiring the lock may continue after
the condition has been handled.

See also:

unlock and Section 9 for details of conditions and signalling.

unlock function

Arguments

lock : the lock to be released.

Result

The lock supplied as argument.

Remarks

The unlock operation unlocks lock so that either a thread subsequently
calling lock or one of the threads which has already called lock on the
lock can gain exclusive access.

See also:

lock.

9. Conditions

The defined name of this module is condition.

The condition system was influenced by the Common Lisp error system
[13] and the Standard ML exception mechanism. It is a simplification
of the former and an extension of the latter. Following standard practice,
this text defines the actions of functions in terms of their normal behaviour.
Where an exceptional behaviour might arise, this has been defined in terms
of a condition. However, not all exceptional situations are errors. Following
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Pitman, we use condition to be a kind of occasion in a program when an
exceptional situation has been signalled. An error is a kind of condition—
error and condition are also used as terms for the objects that represent
exceptional situations. A condition can be signalled continuably by passing
a continuation for the resumption to signal. If a continuation is not supplied
then the condition cannot be continued.

These two categories are characterized as follows:

1. A condition might be signalled when some limit has been transgressed
and some corrective action is needed before processing can resume.
For example, memory zone exhaustion on attempting to heap-allocate
an item can be corrected by calling the memory management scheme
to recover dead space. However, if no space was recovered a new kind
of condition has arisen. Another example arises in the use of IEEE
floating point arithmetic, where a condition might be signalled to
indicate divergence of an operation. A condition should be signalled
continuably when there is a strategy for recovery from the condition.

2. Alternatively, a condition might be signalled when some catastrophic
situation is recognized, such as the memory manager being unable
to allocate more memory or unable to recover sufficient memory
from that already allocated. A condition should be signalled non-
continuably when there is no reasonable way to resume processing.

A condition class is defined using defcondition (see Section 9.1). The
definition of a condition causes the creation of a new class of condition. A
condition is signalled using the function signal, which has two required
arguments and one optional argument: an instance of a condition, a re-
sume continuation or the empty list—the latter signifying a non-continuable
signal—and a thread. A condition can be handled using the special form
with-handler, which takes a function—the handler function—and a se-
quence of forms to be protected. The initial condition class hierarchy is
shown in Figure 5.

9.1. Condition Classes

<condition> class

Init-options

message string : A string, containing information which should pertain to
the situation which caused the condition to be signalled.
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<condition>
<execution-condition>

<invalid-operator>
<cannot-update-setter>
<no-setter>

<environment-condition>
<arithmetic-condition>

<division-by-zero>
<conversion-condition>

<no-converter>
<stream-condition>
<syntax-error>
<thread-condition>

<thread-already-started>
<wrong-thread-continuation>
<wrong-condition-class>

<telos-condition>
<no-next-method>
<non-congruent-lambda-lists>
<incompatible-method-domain>
<no-applicable-method>
<method-domain-clash>

Figure 5: Level-0 initial condition class hierarchy

Remarks

The class which is the superclass of all condition classes.

<execution-condition> condition

This is the general condition class for conditions arising from the execu-
tion of programs by the processor.

<environment-condition> condition

This is the general condition class for conditions arising from the envi-
ronment of the processor.

conditionp function

Arguments

object : An object to examine.



44 PADGET, NUYENS, BRETTHAUER

Result

Returns obj if obj is an instance of <condition>, otherwise ().

initialize method

Specialized Arguments

(condition <condition>) : a condition.

initlist : A list of initialization options as follows:

message string : A string, containing information which should per-
tain to the situation which caused the condition to be signalled.

Result

A new, initialized condition.

Remarks

First calls call-next-method to carry out initialization specified by su-
perclasses then does the <condition> specific initialization. The following
init-option is recognized by this method:

message string : A string which should contain information about the con-
dition that has arisen.

defcondition defining form

Syntax

(defcondition condition-class-name superclass-name init-option∗)

Arguments

condition-class-name : A symbol naming a binding to be initialized with
the new condition class.

superclass-name : A symbol naming a binding of a class to be used as the
superclass of the new condition class.

init-option∗ : A sequence of symbols and expressions to be passed to then
generic functions allocate and initialize.
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Remarks

This defining form defines a new condition class. The first argument is
the name to which the new condition class will be bound. The second is
the name of the superclass of the new condition class and an init-option
is an identifier followed by its (default) initial value. If superclass-name is
(), the superclass is taken to be <condition>. Otherwise superclass-name
must be <condition> or the name of one of its subclasses.

9.2. Condition Handling

Conditions are handled with a function called a handler. Handlers are
established dynamically and have dynamic scope and extent. Thus, when
a condition is signalled, the processor will call the dynamically closest han-
dler. This can accept, resume or decline the condition (see with-handler
for a full discussion and definition of this terminology). If it declines, then
the next dynamically closest handler is called, and so on, until a handler
accepts or resumes the condition. It is the first handler accepting the condi-
tion that is used and this may not necessarily be the most specific. Handlers
are established by the special form with-handler.

signal function

Arguments

condition : The condition to be signalled.

function : The function to be called if the condition is handled and resumed,
that is to say, the condition is continuable, or () otherwise.

[thread] : If this argument is not supplied, the condition is signalled on the
thread which called signal, otherwise, thread indicates the thread on
which condition is to be signalled.

Result

signal should never return. It is an error to call signal’s continuation.

Remarks

Called to indicate that a specified condition has arisen during the execu-
tion of a program.

If the third argument is not supplied, signal calls the dynamically clos-
est handler with condition and continuation. If the second argument is a
subclass of function, it is the resume continuation to be used in the case
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of a handler deciding to resume from a continuable condition. If the second
argument is (), it indicates that the condition was signalled as a non-
continuable condition—in this way the handler is informed of the signaler’s
intention.

If the third argument is supplied, signal registers the specified condition
to be signalled on thread. The condition must be an instance of the condi-
tion class <thread-condition>, otherwise an error is signalled (condition
class: <wrong-condition-class>) on the thread calling signal. A signal
on a determined thread has no effect on either the signalled or signalling
thread except in the case of the above error.

See also:

thread-reschedule, thread-value, with-handler.

<wrong-condition-class> thread-condition

Init-options

condition condition : A condition.

Signalled by signal if the given condition is not an instance of the con-
dition class <thread-condition>.

with-handler special form

Syntax

(with-handler handler-function protected-form)

Arguments

handler-function : A function or a generic function which will be called if a
condition is signalled during the dynamic extent of protected-forms.
A handler function takes two arguments—a condition, and a resume
function/continuation. The condition is the condition object that
was passed to signal as its first argument. The resume continuation
is the continuation (or ()) that was given to signal as its second
argument.

protected-form∗ : The sequence of forms whose execution is protected by
the handler-function specified above.

Result

The value of the last form in the sequence of protected-forms.
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Remarks

A with-handler form is evaluated in four steps:

1. The new handler-function is constructed and identifies the dynami-
cally closest handler.

2. The dynamically closest handler is shadowed by the establishment of
the new handler-function.

3. The sequence of protected-forms is evaluated in order and the value of
the last one is returned as the result of the with-handler expression.

4. the handler-function is disestablished, and the previous handler is no
longer shadowed.

The above is the normal behaviour of with-handler. The exceptional
behaviour of with-handler happens when there is a call to signal dur-
ing the evaluation of protected-form. signal calls the dynamically closest
handler-function passing on the first two arguments given to signal. The
handler-function is executed in the dynamic extent of the call to signal.
However, any signals occurring during the execution of handler-function
are dealt with by the dynamically closest handler outside the extent of the
form which established handler-function. A handler-function takes one of
three actions:

1. Return. This causes the next-closest enclosing handler-function to be
called, passing on the condition and the resume continuation. This is
termed declining the condition. The situation when there is no next
closest enclosing handler is discussed later.

2. Call the resume continuation. This action might be taken if the con-
dition is recognized by the handler function and might be preceded
by some corrective action. This is termed resuming the condition.

3. Not return and not call the resume continuation. This action might
be taken if the condition is recognized by the handler function and
might be preceded by some corrective action before some kind of
transfer of control. This is termed accepting the condition.

It is an error if the condition is declined and there is no next closest en-
closing handler. In this circumstance the identified error is delivered to the
configuration to be dealt with in an implementation-defined way. Errors
arising in the dynamic extent of the handler function are signalled in the
dynamic extent of the original signal but are handled in the enclosing
dynamic extent of the handler.
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(let/cc accept
(with-handler

(generic-lambda ((condition <condition>) (resume <function>))
method
(((c <condition>) resume)
(cond
((seriousp c)
;;serious error, exit from with-handler (accept)
(accept))

((fixablep c)
;;fixable error (resume)
(resume (fix c)))

(t
;;otherwise, by omission, let another handler deal
;;with it (decline)
()))))

;;the protected expression
(something-which-might-signal-an-error)))

Figure 6: Illustration of handler actions

Examples

An illustration of the use of all three cases is given in Figure 6.

See also:

signal.

error function

cerror function

Arguments

error-message : a string containing relevant information.

condition-class : the class of condition to be signalled.

init-option∗ : a sequence of options to be passed to initialize-instance
when making the instance of condition.

Result

The result of both of these functions is ().
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Remarks

The cerror and error functions signal continuable and non-continuable
errors, respectively. Each calls signal with an instance of a condition
of condition-class initialized from init-options, the error-message and a
resume continuation. In the case of cerror the resume continuation is
the continuation of the cerror expression. In the case of error, it is (),
signifying that the condition was not signalled continuably.

10. Expressions, Definitions and Control Forms

This section gives the syntax of well-formed expressions and describes the
semantics of the special-forms, functions and macros of the level-0 language.
In the case of level-0 macros, the description includes a set of expansion
rules. However, these descriptions are not prescriptive of any processor and
a conforming program cannot rely on adherence to these expansions.

10.1. Atomic Expressions

constant syntax

There are two kinds of constants, literal constants and defined constants.
Only the first kind are considered here. A literal constant is a number, a
string, a character, or the empty list. The result of processing such a literal
constant is the constant itself—that is, it denotes itself.

Examples

() the empty list
123 a fixed precision integer
#\a a character
"abc" a string

defconstant defining form

Syntax

(defconstant identifier form)

Arguments

identifier : A symbol naming an immutable top-lexical binding to be ini-
tialized with the value of form.

form : The form whose value will be stored in the binding of identifier.
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Remarks

The value of form is stored in the top-lexical binding of identifier. It is
a static error to attempt to modify the binding of a defined constant.

nil <null>

Remarks

The symbol nil is defined to be immutably bound to the empty list,
which is represented as (). The empty list is used to denote the abstract
boolean value false.

t <symbol>

Remarks

The symbol t is defined to be immutably bound to the symbol t. This
may be used to denote the abstract boolean value true, but so may any
other value than ().

symbol syntax

The current lexical binding of symbol is returned. A symbol can also
name a defined constant—that is, an immutable top-lexical binding.

deflocal defining form

Syntax

(deflocal identifier form)

Arguments

identifier : A symbol naming a binding containing the value of form.

form : The form whose value will be stored in the binding of identifier.

Remarks

The value of form is stored in the top-lexical binding of identifier. The
binding created by a deflocal form is mutable.

See also:

setq.
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10.2. Literal Expressions

quote special form

Syntax

(quote datum)

Arguments

datum : the datum to be quoted.

Result

The result is datum.

Remarks

The result of processing the expression (quote datum) is datum. The da-
tum can be any object having an external representation. The special form
quote can be abbreviated using apostrophe—graphic representation ’—so
that (quote a) can be written ’a. These two notations are used to in-
corporate literal constants in programs. It is an error to modify a literal
expression.

10.3. Functions: creation, definition and application

lambda special form

Syntax

(lambda lambda-list body)

Arguments

lambda-list : The parameter list of the function conforming to the syntax
specified in Table 7.

body : A sequence of forms.

Result

A function with the specified lambda-list and body.

Remarks

The function construction operator is lambda. Access to the lexical en-
vironment of definition is guaranteed. The syntax of lambda-list is defined
by the grammar in Table 7.
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Table 7: Lambda list syntax

lambda-list ::= identifier | simple-list | rest-list
simple-list ::= (identifier∗)

rest-list ::= (identifier+ . identifier)

If lambda-list is an identifier, it is bound to a newly allocated list of the
actual parameters. This binding has lexical scope and indefinite extent. If
lambda-list is a simple-list, the arguments are bound to the corresponding
identifiers. Otherwise, lambda-list must be a rest-list. In this case, each
identifier preceding the dot is bound to the corresponding argument and
the identifier succeeding the dot is bound to a newly allocated list whose
elements are the remaining arguments. These bindings have lexical scope
and indefinite extent. It is a static error if the same identifier appears more
than once in a lambda-list. It is an error to modify rest-list.

defmacro syntax

Syntax

(defmacro macro-name lambda-list body)

Arguments

macro-name : A symbol naming an immutable top-lexical binding to be
initialized with a function having the specified lambda-list and body.

lambda-list : The parameter list of the function conforming to the syntax
specified under lambda.

body : A sequence of forms.

Remarks

The defmacro form defines a function named by macro-name and stores
the definition as the top-lexical binding of macro-name. The interpretation
of the lambda-list is as defined for lambda (see Table 7).

NOTE — A macro is automatically exported from the the module which defines
it. A macro cannot be used in the module which defines it.

See also:

lambda.
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Table 8: defun rewrite rules

(defun identifier lambda-list
body)

≡ (defconstant identifier
(lambda lambda-list body))

(defun (setter identifier)
lambda-list body)

≡ ((setter setter) identifier
(lambda lambda-list body))

defun syntax

Syntax

(defun function-name lambda-list body)
or
(defun (setter function-name) lambda-list body)

Arguments

function-name : A symbol naming an immutable top-lexical binding to be
initialized with a function having the specified lambda-list and body.

(setter function-name) : An expression denoting the setter function to
correspond to function-name.

lambda-list : The parameter list of the function conforming to the syntax
specified under lambda.

body : A sequence of forms.

Remarks

The defun form defines a function named by function-name and stores
the definition (i) as the top-lexical binding of function-name or (ii) as the
setter function of function-name. The interpretation of the lambda-list is
as defined for lambda.

The rewrite rules for defun are given in Table 8.

function call syntax

Syntax

(operator operand∗)
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Arguments

operator : This may be a symbol—being either the name of a special form,
or a lexical variable—or a function call, which must result in an in-
stance of <function>.

An error is signalled (condition class: <invalid-operator>) if the
operator is not a function.

operand∗ : Each operand must be either an atomic expression, a literal ex-
pression or a function call.

Result

The result is the value of the application of operator to the evaluation of
operand∗ .

Remarks

The operand expressions are evaluated in order from left to right. The
operator expression may be evaluated at any time before, during or after
the evaluation of the operands.

NOTE — The above rule for the evaluation of function calls was finally agreed
upon for this version since it is in line with one strand of common practice, but it
may be revised in a future version.

See also:

constant, symbol, quote.

<invalid-operator> execution-condition

Init-options

invalid-operator object : The object which was being used as an opera-
tor.

operand-list list : The operands prepared for the operator.

Remarks

Signalled by function call if the operator is not an instance of <function>.

apply function

Syntax

(apply function obj1 ... objn)
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Arguments

function : An expression which must evaluate to an instance of <function>.

obj1 ... objn−1 : A sequence of expressions, which will be evaluated accord-
ing to the rules given in function call.

objn : An expression which must evaluate to a proper list. It is an error if
objn is not a proper list.

Result

The result is the result of calling function with the actual parameter list
created by appending objn to a list of the arguments obj1 through objn−1.
An error is signalled (condition class: <invalid-operator>) if the first
argument is not an instance of <function>.

See also:

function call, <invalid-operator>.

10.4. Assignments

An assignment operation modifies the contents of a binding named by a
identifier—that is, a variable.

setq special form

Syntax

(setq identifier form)

Arguments

identifier : The identifier whose lexical binding is to be updated.

form : An expression whose value is to be stored in the binding of identifier.

Result

The result is the value of form.

Remarks

The form is evaluated and the result is stored in the closest lexical binding
named by identifier. It is a static error to modify an immutable binding.
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setter function

Arguments

reader : An expression which must evaluate to an instance of <function>.

Result

The writer corresponding to reader.

Remarks

A generalized place update facility is provided by setter. Given reader,
setter returns the corresponding update function. If no such function
is known to setter, an error is signalled (condition class: <no-setter>).
Thus (setter car) returns the function to update the car of a pair. New
update functions can be added by using setter’s update function, which
is accessed by the expression (setter setter). Thus ((setter setter)
a-reader a-writer) installs the function which is the value of a-writer
as the writer of the reader function which is the value of a-reader. All
writer functions in this definition and user-defined writers have the same
immutable status as other standard functions, such that attempting to rede-
fine such a function, for example ((setter setter) car a-new-value),
signals an error (condition class: <cannot-update-setter>)

See also:

defgeneric, defmethod, defstruct, defun.

<no-setter> execution-condition

Init-options

object object : The object given to setter.

Remarks

Signalled by setter if there is no updater for the given function.

<cannot-update-setter> execution-condition

Init-options

accessor object1 : The given accessor object.

updater object2 : The given updater object.
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Remarks

Signalled by (setter setter) if the updater of the given accessor is
immutable.

See also:

setter.

10.5. Conditional Expressions

if special form

Syntax

(if antecedent consequent alternative)

Arguments

antecedent : A form.

consequent : A form.

alternative : A form.

Result

Either the value of consequence or alternative depending on the value of
antecedent.

Remarks

The antecedent is evaluated. If the result is true the consequence is
evaluated, otherwise the alternative is evaluated. Both consequence and
alternative must be specified. The result of if is the result of the evaluation
of whichever of consequence or alternative is chosen.

cond macro

Syntax

(cond (antecedent form∗)∗)

Remarks

The cond macro provides a convenient syntax for collections of if-then-
elseif...else expressions. The rewrite rules for cond are given in Table 9.
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Table 9: cond rewrite rules

(cond) ≡ ()
(cond (antecedent) . . . ) ≡ (or antecedent (cond . . . ))
(cond
(antecedent1)
(antecedent2 form∗)
. . . )

≡ (or antecedent1
(cond

(antecedent2 form∗)
. . .))

(cond
(antecedent1 form∗)
(antecedent2 form∗)
. . . )

≡ (if antecedent1
(progn form∗)
(cond

(antecedent2 form∗)
. . .))

and macro

Syntax

(and form∗)

Remarks

The expansion of an and form leads to the evaluation of the sequence of
forms from left to right. The first form in the sequence that evaluates to ()
stops evaluation and none of the forms to its right will be evaluated—that
is to say, it is non-strict. The result of (and) is (). If none of the forms
evaluate to (), the value of the last form is returned. The rewrite rules for
and are given in Table 10.

or macro

Syntax

(or form∗)

Remarks

The expansion of an or form leads to the evaluation of the sequence
of forms from left to right. The value of the first form that evaluates to
true is the result of the or form and none of the forms to its right will be
evaluated—that is to say, it is non-strict. If none of the forms evaluate to
true, the value of the last form is returned. The rewrite rules for or are
given in Table 10. Note that x does not occur free in any of form2 . . . formn.
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Table 10: and and or rewrite rules

(and) ≡ t
(and form) ≡ form
(and form1 form2 . . . ) ≡ (if form1 (and form2 . . .) ())

(or) ≡ ()
(or form) ≡ form
(or form1 form2 . . . ) ≡ (let ((x form1))

(if x x (or form2 . . .)))

10.6. Variable Binding and Sequences

let/cc special form

Syntax

(let/cc identifier body)

Arguments

identifier : To be bound to the continuation of the let/cc form.

body : A sequence of forms.

Result

The result of evaluating the last form in body or the value of the argument
given to the continuation bound to identifier.

Remarks

The identifier is bound to a new location, which is initialized with the
continuation of the let/cc form. This binding is immutable and has lexical
scope and indefinite extent. Each form in body is evaluated in order in the
environment extended by the above binding. It is an error to call the
continuation outside the dynamic extent of the let/cc form that created
it. The continuation is a function of one argument. Calling the continuation
causes the restoration of the lexical environment and dynamic environment
that existed before entering the let/cc form.

Examples

An example of the use of let/cc is given in Figure 7. The function
path-open takes a list of paths, the name of a file and list of options to
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(defun path-open (pathlist name . options)
(let/cc succeed

(map
(lambda (path)
(let/cc fail
(with-handler
(lambda (condition resume) (fail ()))
(succeed (apply open (format nil "~a/~a" path name)

options)))))
pathlist)

(error
(format nil "path-open: cannot open stream for (~a) ~a"

pathlist name)
<cannot-open-path>)))

Figure 7: Example using let/cc

pass to open. It tries to open the file by appending the name to each path
in turn. Each time open fails, it signals a condition that the file was not
found which is trapped by the handler function. That calls the continuation
bound to fail to cause it to try the next path in the list. When open does
find a file, the continuation bound to succeed is called with the stream as
its argument, which is subsequently returned to the caller of path-open.
If the path list is exhausted, map terminates and an error (condition class:
<cannot-open-path>) is signalled.

See also:

block, return-from.

block macro

Syntax

(block identifier form∗)

Remarks

The block expression is used to establish a statically scoped binding of
an escape function. The block variable is bound to the continuation of the
block. The continuation can be invoked anywhere within the block by using
return-from. The forms are evaluated in sequence and the value of the
last one is returned as the value of the block form. See also let/cc. The
rewrite rules for block are given in Table 11.
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Table 11: block and return-from rewrite rules

(block identifier) ≡ ()
(block identifier form∗) ≡ (let/cc identifier form∗)

(return-from identifier) ≡ (identifier ())
(return-from identifier form) ≡ (identifier form)

The rewrite for block, does not prevent the block being exited from
anywhere in its dynamic extent, since the function bound to identifier is a
first-class item and can be passed as an argument like other values.

See also:

return-from.

return-from macro

Syntax

(return-from identifier [form])

Remarks

In return-from, the identifier names the continuation of the (lexical)
block from which to return. return-from is the invocation of the continu-
ation of the block named by identifier. The form is evaluated and the value
is returned as the value of the block named by identifier. The rewrite rules
for return-from are given in Table 11.

See also:

block.

labels special form

Syntax

(labels ((identifier lambda-list body)∗) labels-body)

Arguments

identifier : A symbol naming a new inner-lexical binding to be initialized
with the function having the lambda-list and body specified.
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lambda-list : The parameter list of the function conforming to the syntax
specified below.

body : A sequence of forms.

labels-body : A sequence of forms.

Result

The labels operator provides for local mutually recursive function cre-
ation. Each identifier is bound to a new inner-lexical binding initialized
with the function constructed from lambda-list and body. The scope of the
identifiers is the entire labels form. The lambda-list is either a single vari-
able or a list of variables—see lambda. Each form in labels-body is evaluated
in order in the lexical environment extended with the bindings of the iden-
tifiers. The result of evaluating the last form in labels-body is returned as
the result of the labels form.

let macro

Syntax

(let [identifier] (binding∗) body)

Remarks

The optional identifier denotes that the let form can be called from
within its body. This is an abbreviation for labels form in which identifier
is bound to a function whose parameters are the identifiers of the bindings
of the let, whose body is that of the let and whose initial call passes the
values of the initializing form of the bindings. A binding is specified by
either an identifier or a two element list of an identifier and an initializing
form. All the initializing forms are evaluated in order from left to right in
the current environment and the variables named by the identifiers in the
bindings are bound to new locations holding the results. Each form in body
is evaluated in order in the environment extended by the above bindings.
The result of evaluating the last form in body is returned as the result of
the let form. The rewrite rules for let are given in Table 12.

let* macro

Syntax

(let* (binding∗) body)
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Table 12: let rewrite rules

(let () form∗) ≡ (progn form∗)
(let ((id1 form1)

(id2 form2)
id3
. . . )

form∗)

≡ ((lambda (id1 id2 id3 . . . )
form∗)

form1 form2 () . . .)

(let id0
((id1 form1)
id2
. . . )

form∗)

≡ (labels
((id0 (id1 id2 . . . )
form∗))

(id0 form1 () . . . ))

Table 13: let* rewrite rules

(let* () form∗) ≡ (progn form∗)
(let* ((var1 form1)

(var2 form2)
var3
. . . )

form∗)

≡ (let ((var1 form1))
(let* ((var2 form2)

var3
. . . )

form∗))

Remarks

A binding is specified by a two element list of a variable and an initializing
form. The first initializing form is evaluated in the current environment and
the corresponding variable is bound to a new location containing that result.
Subsequent bindings are processed in turn, evaluating the initializing form
in the environment extended by the previous binding. Each form in body
is evaluated in order in the environment extended by the above bindings.
The result of evaluating the last form is returned as the result of the let*
form. The rewrite rules for let* are given in Table 13.

progn special form

Syntax

(progn form∗)
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Arguments

form∗ : A sequence of forms and in certain circumstances, defining forms.

Result

The sequence of forms is evaluated from left to right, returning the value
of the last one as the result of the progn form. If the sequence of forms is
empty, progn returns ().

Remarks

If the progn form occurs enclosed only by progn forms and a defmodule
form, then the forms within the progn can be defining forms, since they
appear in the top-lexical environment. It is a static error for defining forms
to appear in inner-lexical environments.

unwind-protect special form

Syntax

(unwind-protect protected-form after-form∗)

Arguments

protected-form : A form.

after-form∗ : A sequence of forms.

Result

The value of protected-form.

Remarks

The normal action of unwind-protect is to process protected-form and
then each of after-forms in order, returning the value of protected-form as
the result of unwind-protect. A non-local exit from the dynamic extent
of protected-form, which can be caused by processing a non-local exit form,
will cause each of after-forms to be processed before control goes to the
continuation specified in the non-local exit form. The after-forms are not
protected in any way by the current unwind-protect. Should any kind
of non-local exit occur during the processing of the after-forms, the after-
forms being processed are not reentered. Instead, control is transferred
to wherever specified by the new non-local exit but the after-forms of any
intervening unwind-protects between the dynamic extent of the target of
control transfer and the current unwind-protect are evaluated in increas-
ing order of dynamic extent.
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(progn
(let/cc k1

(labels
((loop

(let/cc k2 (unwind-protect (k1 10) (k2 99))
;;continuation bound to k2
(loop))))

(loop)))
;;continuation bound to k1
...)

Figure 8: Interaction of unwind-protect with non-local exits

Examples

The code fragment in Figure 8 illustrates both the use of unwind-protect
and of a difference between the semantics of EuLisp and some other Lisps.
Stepping through the evaluation of this form: k1 is bound to the continu-
ation of its let/cc form; a recursive function named loop is constructed,
loop is called from the body of the labels form; k2 is bound to the con-
tinuation of its let/cc form; unwind-protect calls k1; the after forms of
unwind-protect are evaluated in order; k2 is called; loop is called; etc..
This program loops indefinitely.

10.7. Events

The defined name of this module is event.

wait generic function

Generic Arguments

obj : An object.

(timeout <object>) : One of (), t or a non-negative integer.

Result

Returns () if timeout was reached, otherwise a non-() value.

Remarks

wait provides a generic interface to operations which may block. Execu-
tion of the current thread will continue beyond the wait form only when
one of the following happened:
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1. A condition associated with obj returns true;

2. timeout time units elapse;

3. A condition is raised by another thread on this thread.

wait returns () if timeout occurs, else it returns a non-nil value.

A timeout argument of () or zero denotes a polling operation. A
timeout argument of t denotes indefinite blocking (cases 1 or 3 above).
A timeout argument of a non-negative integer denotes the minimum num-
ber of time units before timeout. The number of time units in a second is
given by the implementation-defined constant ticks-per-second.

Examples

This code fragment copies characters from stream s to the current output
stream until no data is received on the stream for a period of at least 1
second.

(labels
((loop ()

(when (wait s (round ticks-per-second))
(print (read-char s))
(loop))))

(loop))

See also:

threads (section 8.1), streams (section A.13).

ticks-per-second <double-float>

The number of time units in a second expressed as a double precision
floating point number. This value is implementation-defined.

10.8. Quasiquotation Expressions

quasiquote macro

Syntax

(quasiquote skeleton) or ‘skeleton

Remarks

Quasiquotation is also known as backquoting. A quasiquoted expression
is a convenient way of building a structure. The skeleton describes the shape
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and, generally, many of the entries in the structure but some holes remain
to be filled. The quasiquote macro can be abbreviated by using the glyph
called grave accent (‘), so that (quasiquote expression) can be written
‘expression.

unquote syntax

Syntax

(unquote form) or ,form

Remarks

See unquote-splicing.

unquote-splicing syntax

Syntax

(unquote-splicing form) or ,@form

Remarks

The holes in a quasiquoted expression are identified by unquote ex-
pressions of which there are two kinds—forms whose value is to be in-
serted at that location in the structure and forms whose value is to be
spliced into the structure at that location. The former is indicated by an
unquote expression and the latter by an unquote-splicing expression. In
unquote-splice the form must result in a proper list. The insertion of the
result of an unquote-splice expression is as if the opening and closing paren-
theses of the list are removed and all the elements of the list are appended
in place of the unquote-splice expression.

The syntax forms unquote and unquote-splicing can be abbreviated
respectively by using the glyph called comma (,) preceding an expression
and by using the diphthong comma followed by the glyph called commercial
at (,@) preceding a form. Thus, (unquote a) may be written ,a and
(unquote-splicing a) can be written ,@a.

Examples

‘(a ,(list 1 2) b) → (a (1 2) b)
‘(a ,@(list 1 2) b) → (a 1 2 b)
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11. History and Acknowledgements

The EuLisp group first met in September 1985 at IRCAM in Paris to dis-
cuss the idea of a new dialect of Lisp, which should be less constrained by
the past than Common Lisp and less minimalist than Scheme. Subsequent
meetings formulated the view of EuLisp that was presented at the 1986
ACM Conference on Lisp and Functional Programming held at MIT, Cam-
bridge, Massachusetts [12] and at the European Conference on Artificial
Intelligence (ECAI-86) held in Brighton, Sussex [18]. Since then, progress
has not been steady, but happening as various people had sufficient time
and energy to develop part of the language. Consequently, although the vi-
sion of the language has in the most part been shared over this period, only
certain parts were turned into physical descriptions and implementations.
For a nine month period starting in January 1989, through the support of
INRIA, it became possible to start writing the EuLisp definition. Since
then, affairs have returned to their previous state, but with the evolution
of the implementations of EuLisp and the background of the foundations
laid by the INRIA-supported work, there is convergence to a consistent and
practical definition.

The acknowledgments for this definition fall into three categories: intel-
lectual, personal, and financial.

The ancestors of EuLisp (in alphabetical order) are Common Lisp[17],
InterLISP[19], LE-LISP [4], LISP/VM [1], Scheme [6], and T [14] [16]. Thus,
the authors of this report are pleased to acknowledge both the authors of
the manuals and definitions of the above languages and the many who have
dissected and extended those languages in individual papers. The various
papers on Standard ML [11] and the draft report on Haskell [8] have also
provided much useful input.

The writing of this report has, at various stages, been supported by Bull
S.A., Gesellschaft für Mathematik und Datenverarbeitung (GMD, Sankt
Augustin), Ecole Polytechnique (LIX), ILOG S.A., Institut National de
Recherche en Informatique et en Automatique (INRIA), University of Bath,
and Université Paris VI (LITP). The authors gratefully acknowledge this
support. Many people from European Community countries have attended
and contributed to EuLisp meetings since they started, and the authors
would like to thank all those who have helped in the development of the
language.

In the beginning, the work of the EuLisp group was supported by the
institutions or companies where the participants worked, but in 1987 DG
XIII (Information technology directorate) of the Commission of the Eu-
ropean Communities agreed to support the continuation of the working
group by funding meetings and providing places to meet. It can honestly be
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said that without this support EuLisp would not have reached its present
state. In addition, the EuLisp group is grateful for the support of: British
Council in France (Alliance programme), British Council in Spain (Ac-
ciones Integradas programme), British Council in Germany (Academic Re-
search Collaboration programme), British Standards Institute, Deutscher
Akademischer Austauschdienst (DAAD), Departament de Llenguatges i
Sistemes Informàtics (LSI, Universitat Politècnica de Catalunya), Fraun-
hofer Gesellschaft Institut für Software und Systemtechnik, Gesellschaft für
Mathematik und Datenverarbeitung (GMD), ILOG S.A., Insiders GmbH,
Institut National de Recherche en Informatique et en Automatique (IN-
RIA), Institut de Recherche et de Coordination Acoustique Musique (IR-
CAM), Rank Xerox France, Science and Engineering Research Council
(UK), Siemens AG, University of Bath, University of Technology, Delft,
University of Edinburgh, Universität Erlangen and Université Paris VI
(LITP).

The following people (in alphabetical order) have contributed in vari-
ous ways to the evolution of the language: Giuseppe Attardi, Javier Béjar,
Russell Bradford, Harry Bretthauer, Peter Broadbery, Christopher Bur-
dorf, Jérôme Chailloux, Thomas Christaller, Jeff Dalton, Klaus Däßler,
Harley Davis, David DeRoure, John Fitch, Richard Gabriel, Brigitte Glas,
Nicolas Graube, Dieter Kolb, Jürgen Kopp, Antonio Moreno, Eugen Neidl,
Pierre Parquier, Keith Playford, Willem van der Poel, Christian Queinnec,
Enric Sesa, Herbert Stoyan, and Richard Tobin.

The editors of the EuLisp definition wish particularly to acknowledge the
work of Harley Davis on the first versions of the description of the object
system. The second version was largely the work of Harry Bretthauer, with
the assistance of Jürgen Kopp, Harley Davis and Keith Playford.
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INRIA, Rocquencourt (1987).

6. Clinger, W. and Rees, J.A. (editors). The Revised3 Report on Scheme.
SIGPLAN Notices, 21, 12 (December 1986).

7. Cointe, P. Metaclasses are First Class: the ObjVlisp model. In Proceed-
ings of OOPSLA ’87, ACM Press (December 1987) 156–167. published
as SIGPLAN Notices, Vol 22, No 12.

8. Hudak, P. and Wadler, P. (editors). Report on the Functional Pro-
gramming Language Haskell. SIGPLAN Notices, 27, 7 (May 1992).

9. Lang, K.J. and Pearlmutter, B.A. Oaklisp: An Object-Oriented Dialect
of Scheme. Lisp and Symbolic Computation, 1, 1 (June 1988) 39–51.

10. MacQueen, D. Modules for Standard ML. In Proceedings of 1984
ACM Symposium on Lisp and Functional Programming, ACM Press,
New York (1984) 198–207.

11. Milner, R. and et al. Standard ML. Technical Report, Laboratory for
the Foundations of Computer Science, University of Edinburgh (1986).

12. Padget, J.A. et al. Desiderata for the Standardisation of Lisp. In
Proceedings of 1986 ACM Symposium on Lisp and Functional Pro-
gramming, ACM Press, New York (1986) 54–66.

13. Pitman, K.M. An Error System for Common Lisp. (1988). ISO-IEC
JTC1 SC22 WG16 document N24.

14. Rees, J.A. The T Manual. Technical Report, Yale University (1986).

15. Shalit, A. Dylan, an object-oriented dynamic language. Apple Com-
puter Inc. (1992).

16. Slade, S. The T Programming Language, a Dialect of Lisp. Prentice-
Hall (1987).

17. Steele Jr, G.L. Common Lisp the Language. Digital Press (1984).
Second edition, Digital Press, 1990.



AN OVERVIEW OF EuLisp 71

18. Stoyan, H. et al. Towards a Lisp Standard. In Proceedings of 1986
European Conference on Artificial Intelligence (1986) 46–52.

19. Teitelman, W. The Interlisp Reference Manual. Xerox Palo Alto Re-
search Center (1978).

A. Level-0 Module Library

This part of the definition contains entries for each of the remaining modules
comprising level-0 of EuLisp. Most of them export a class and operations
on that class. The rest export functions implementing useful operations,
such as copying, comparison and conversion. This section has purposely
been highly compressed, since there is little that is very different from other
Lisps, although each of these is documented in detail in the full version of
the definition.

A.1. Characters

Character comparison is supported via methods on < and other such
generic functions. However, it is only meaningful to compare a lower case
character with another lower case, upper with upper and digit with digit.
All other combinations are undefined. There is primitive support for the
input of two-byte characters by specifying the character’s index position
in the current character set, for example: #\x0 and #\xabcd, which de-
note, respectively, the characters at position 0 and at position 43981 in the
current character set.

A.2. Collections

Exports a set of generic functions, the methods for which are defined in
various other modules, to provide a set of operators for all the predefined
aggregates (<list>, <string>, <table>, <vector>). The specification of
collections is still being finalized, but has been influenced by the operations
outlined in Dylan [15].

A.3. Comparison

Exports the functions eq, eql, binary=, binary< and equal. Both
binary= and binary< are generic but the domain of the former is restricted
to subclasses of <number>. The function equal is also generic.

A.4. Conversion

The function convert takes an object and a class as its argument and
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returns a direct or indirect instance of class which is the result of converting
the object to the class. This works by associating a (generic) converter
function with each target class. The methods attached to this generic
function for each source class are responsible for the conversion of the object
to an instance of the target class. The syntax of defgeneric and defmethod
are both extended to help with the definition of converter functions and
methods.

A.5. Copying

Exports two generic functions called deep-copy and shallow-copy to
which the class-specific modules add methods.

A.6. Double floats

Defines methods on the standard arithmetic operators, functions for
rounding and maximum and minimum positive and negative values.

A.7. Elementary functions

Exports the same set of trigonometric functions as provided by ISO-C.

A.8. Formatted input-output

Exports a function named format which takes the same parameters as
Common Lisp’s format, but accepts only a subset of its formatting direc-
tives.

A.9. Fixed precision integers

Defines methods on the standard arithmetic operators.

A.10. The empty list

Exports the class <null> and the function null. Note: this class is a
subclass of <list> and disjoint from <cons>.

A.11. Numbers

Exports the abstract class <number> and the generic functions for the
standard arithmetic operators.

A.12. Pairs

Exports the class <cons> its constructor cons and accessors car and cdr,
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and the copying functions copy-list and copy-tree. Note: this class is a
subclass of <list> and disjoint from <null>.

A.13. Streams

Currently, the only defined stream class is <file-stream>. Input is
via the function read and output via prin and write, which call generic
counterparts to do the actual output operations.

A.14. Strings

Exports the class <string> which is largely indistinguishable from any
other Lisp.

A.15. Symbols

Almost the same syntax as for Common Lisp, except that case is signif-
icant.

A.16. Tables

Exports the class <table> which provides a key to value mapping similar
to that in most other Lisps.

A.17. Vectors

The class <vector> corresponds to Common Lisp’s simple vector type,
that is, there are no displaced arrays, nor adjustable arrays.

B. Level-1 Extensions

The part gives a brief overview of level-1 of EuLisp concentrating on the
facilities of the metaobject protocol. These items are described in more
detail in the full version of the definition.

B.1. Syntax Extensions

B.1.1. Classes

The defclass form extends the defstruct form of level-0 (see Sec-
tion 7.3) to define any kind of class. It has the following syntax:

(defclass class-name (superclass-name∗) (slot-spec∗) class-option∗)

It differs from defstruct in allowing multiple superclasses and additional
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Table 14: defclass syntax (level-1)
class-name ::= identifier

superclass-name ::= {the name of a subclass of <object>}
slot-spec ::= slot-name | (slot-name slot-option∗)

slot-name ::= identifier
slot-option ::= initarg identifier

| initform form
| reader identifier
| writer identifier
| accessor identifier
| identifier expression

class-option ::= initargs (identifier∗)
| constructor constructor-spec
| predicate identifier
| class class-name
| identifier expression

slot and class options as shown in Table 14.

The value of the class class-option specifies the class of the new class,
whose default is <class>. The value of a non-standard slot or class option
(identifier expression) is evaluated in the lexical and dynamic environment
of defclass and passed to make of the slot description or class, respectively.
This option is used for new slot descriptions or metaclasses which need extra
information beside the standard options.

B.1.2. Generic Functions

The syntax of generic-lambda is an extension of the level-0 syntax al-
lowing additional init-options (see Table 15):

(generic-lambda gen-lambda-list level-1-init-option∗)

The additional options include the specification of the class of the new
generic function, which defaults to <generic-function>, the class of all
methods, which defaults to <method>, and non-standard options. The lat-
ter are evaluated in the lexical and dynamic environment of defgeneric
and passed to make of the generic function as additional initialization ar-
guments.

The defgeneric defining form extends the one of level-0 in the same
way as generic-lambda is extended. Thus, the defgeneric form can be
rewritten as shown in Table 6, except that level-0-init-options are replaced
by level-1-init-options as per Table 15.
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Table 15: generic-lambda syntax (level-1)

level-1-init-option ::= level-0-init-option
| class gf-class-name
| method-class method-class-name
| method level-1-method-description
| identifier expression

gf-class-name ::= {the name a subclass of
<generic-function>}

method-class-name ::= {the name of a subclass of
<method>}

level-1-method-description ::= (method-init-option∗ spec-lambda-list
form∗)

method-init-option ::= class method-class-name
| identifier expression

B.1.3. Methods

The method-lambda form defines and returns an unattached method. It
is the counterpart to generic-lambda and its syntax is:

(method-lambda method-init-option∗ spec-lambda-list form∗)

The additional method-init-options includes class, for specifying the
class of the method to be defined, and non-standard options, which are
evaluated in the lexical and dynamic environment of method-lambda and
passed to initialize of that method.

The defmethod form of level-1 extends that of level-0 to accept method-
init-options. The syntax is:

(defmethod gf-name method-init-option∗ spec-lambda-list form∗)

B.2. The Metaobject Protocol

B.2.1. System Defined Classes

The basic classes of level-1 of EuLisp are shown in Figure 9, which extend
the class hierarchy found in Section 7.1. The class of each class is shown
after it enclosed in square brackets. It may be a direct or indirect instance
of that class.

Standard classes are not redefinable and support single inheritance only.
General multiple inheritance or mixin inheritance can be provided by ex-
tensions. Nor is it possible to use a class as a superclass which is not defined
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<object> [<abstract-class>]
<class> [<class>]

<abstract-class> [<class>]
<function-class> [<class>]

<slot-description> [<abstract-class>]
<local-slot-description> [<class>]

<function> [<abstract-class>]
<generic-function> [<function-class>]

<method> [<class>]

Figure 9: Class Hierarchy

at the time of class definition. Again, such forward reference facilities can
be provided by extensions.

Standard classes support local slots only. Shared slots can be provided
by extensions. The class <slot-description> is the abstract class of all
slot descriptions.

B.2.2. Introspection

The minimal information associated with an object is its class. The
corresponding introspection function class-of is defined for all objects.

The minimal information associated with a class metaobject is: The class
precedence list, ordered most specific first, beginning with the class itself,
the list of (effective) slot descriptions, the list of (effective) initargs, and
the instance size.

Access to this information is provided by functions which take a class as
their only argument:

class-precendence-list
class-slot-descriptions
class-initargs
class-instance-size

The minimal information associated with a slot description metaobject
is: the name, which is required to perform inheritance computations, the
initfunction, called by default to compute the initial slot value when creat-
ing a new instance, the reader, which is a function to read the corresponding
slot value of an instance, the writer, which is a function to write the corre-
sponding slot of an instance, and the initarg, which is a symbol to access
the value which can be supplied to a make call in order to initialize the
corresponding slot in a newly-created object.

The information associated with slot descriptions can be accessed via
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operations which take a slot description as their only argument. These
functions are:

slot-description-name
slot-description-initfunction
slot-description-slot-reader
slot-description-slot-writer
slot-description-initarg

The minimum information associated with a generic function metaobject
is: the domain, restricting the domain of each added method to a subdo-
main, the method class, restricting each added method to be an instance
of that class, the list of all attached methods, the method look-up function
used to collect and sort the applicable methods for a given domain, and the
discriminating function used to perform the generic dispatch.

The associated introspection operations which take a generic function as
their only argument are:

generic-function-domain
generic-function-method-class
generic-function-methods
generic-function-method-lookup-function
generic-function-discriminating-function

The minimal information associated with a method metaobject is the
domain, which is a list of classes. The associated introspection operation
which take a method as its only argument is method-domain.

B.2.3. Class Initialization and Inheritance

The init-options for classes are:

direct-superclasses
direct-slot-descriptions
direct-initargs

The init-options for slot descriptions are:

name
initfunction
reader
writer
initarg

The default initialization of a class takes place in four steps. First com-
patibility of the direct superclasses is checked. Then the logical inheritance
computations are done. This includes the class precedence list, the initargs,
the effective slot descriptions, and the instance size. The third step com-
putes the new slot accessors and ensures all (new and inherited) accessors
work correctly on instances of the new class. Finally, the results are made
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compatible-superclasses-p cl direct-superclasses → boolean
compatible-superclass-p cl superclass → boolean

compute-class-precedence-list cl direct-superclasses → (cl∗)
compute-inherited-initargs cl direct-superclasses → ((initarg∗)∗)
compute-initargs cl direct-initargs inh-initargs → (initarg∗)
compute-inherited-slot-descriptions cl direct-superclasses → ((sd∗)∗)
compute-slot-descriptions cl slot-specs inh-sds → (sd∗)

either
compute-defined-slot-description cl slot-spec → sd

compute-defined-slot-description-class cl slot-spec → sd-class
or
compute-specialized-slot-description cl inh-sds slot-spec → sd

compute-specialized-slot-description-class
cl inh-sds slot-spec → sd-class

compute-instance-size cl eff-sds → integer
compute-and-ensure-slot-accessors cl eff-sds inh-sds → (sd∗)
compute-slot-reader cl sd eff-sds → function
compute-slot-writer cl sd eff-sds → function
ensure-slot-reader cl sd eff-sds reader → function

compute-primitive-reader-using-slot-description
sd cl eff-sds → function

compute-primitive-reader-using-class cl sd eff-sds → function
ensure-slot-writer cl sd eff-sds writer → function

compute-primitive-writer-using-slot-description
sd cl eff-sds → function

compute-primitive-writer-using-class cl sd eff-sds → function

Figure 10: Initialization Call Structure

accessible by the class introspection operations. The basic call structure of
the first three steps is laid out in Figure 10. It uses the following abbrevia-
tions: cl – class, sd – slot-description, inh – inherited, eff – effective. Note
that it is implementation-defined whether any of these steps are performed
completely at initialization time or lazily when needed.

The generic function compatible-superclasses-p checks the compati-
bility between class and its direct-superclasses by calling compatible-su-
perclass-p for class and each of its superclasses. compute-class-pre-
cedence-list returns a list of classes which represents the linearized in-
heritance hierarchy of class cl and the given list of direct-superclasses,
beginning with cl and ending with <object>. compute-initargs com-
putes and returns all legal initargs for a class. Therefore, it takes the
result of compute-inherited-initargs which returns a list of the le-
gal initarg lists of the (direct) superclasses. The computation of the ef-
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fective slot descriptions is done by compute-slot-descriptions which
takes the class cl, the direct slot specifications slot-specs, and the inher-
ited slot descriptions inh-sds as its arguments. The latter are computed by
compute-inherited-slot-descriptions which takes the class cl and its
direct-superclasses and returns a list containing lists of inherited slot de-
scriptions. compute-slot-descriptions distinguishes between the com-
putation of specialized and newly-defined slot descriptions and calls either

compute-specialized-slot-description
or
compute-defined-slot-description

The former takes for each slot name as arguments the class cl, the list of
inherited slot descriptions inh-sds and the canonicalized slot specification
slot-spec and the latter takes cl and slot-spec. Both generic functions return
a new effective slot description. They call

compute-specialized-slot-description-class
or
compute-defined-slot-description-class,

respectively, to get the class for the new effective slot description corre-
sponding to its arguments which defaults to <local-slot-description>.
The instance size computation is described in Section B.2.6. The third step
is described as a subprotocol in the next section.

All of the default methods profit from the single inheritance assumption,
but the call structure and the supplied arguments take into account that
there will exist classes with different inheritance strategies.

B.2.4. Slot Accessor Computation

Rather than have a dynamic slot access protocol, TELOS provides a stan-
dard protocol for computing readers and writers. Every slot description
contains one reader and one writer capable of extracting and updating the
corresponding slot within instances. Accessor defining slot options within
a defclass merely bind the slot’s single reader or writer to the appropriate
name, therefore two readers for the same slot bound to different names will
always be eq.

All slot accesses take place through calls to these accessor functions. No
counterpart of slot-value found in CLOS is provided, although it can be
written in terms of accessors.

Accessors are computed and updated as part of the initialization of a
class calling compute-and-ensure-slot-accessors (see Figure 10).
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A new slot, that is one which is not inherited, has a reader computed for
it by compute-slot-reader and a writer by compute-slot-writer. The
results which are

1. simple functions for structure classes, and

2. generic function without any methods for standard classes

are then stored in its slot description.

Inherited slots, either specialized in some way or left unchanged, take
the reader and writer from the corresponding slot description objects of
the superclasses.

Accessor functions computed or inherited in this way are updated to
work for direct instances of a particular class calling ensure-slot-reader
and ensure-slot-writer for that class:

1. For structure classes, the ensure operations need do nothing since the
slot position can never change in subclasses.

2. For standard classes, they add a method to accessor capable of access-
ing the appropriate slot of direct instances of class cl. In cases where
the slot has not “moved” relative to its position within instances of
the superclasses of cl, there may be no need to update the accessor
function.

The standard ensuring methods use a subprotocol for computing primi-
tive accessors used in the new method bodies – standard functions capable
of accessing a particular slot in direct instances of a given class.

These subprotocol functions are the direct counterpart of slot-val-
ue-using-class in CLOS and are the generic functions most commonly
used to change the behaviour of slot access.

By default, compute-primitive-reader-using-slot-description re-
turns the result of calling compute-primitive-reader-using-class. For
standard classes and local slot descriptions this is a function of one argu-
ment that when applied to a direct instance of class cl, returns the value
of the slot described by slot description sd. Its behaviour on instances of
other classes, even subclasses of the specified class, is undefined in general.
For structure classes, its behaviour on direct and indirect instances of cl is
the same.

Similarly for writers, the result is a function of two arguments: a direct
instance of class cl and a new value for the slot in question.
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B.2.5. Method Lookup and Generic Dispatch

The default generic dispatch scheme is class-based; that is, methods
are class specific. The argument precedence order is by default left-to-
right. This functionality specified at level-0 in detail is provided by the
following protocol. A newly-created generic function is prepared for call-
ing by the corresponding initialize method. Generic functions can be
created calling make or generic-lambda, while methods are created only
by method-lambda. The only init-option which can be used within the
initialize method called by method-lambda is domain. It specifies the
list of the argument classes. The init-options for generic functions are:

domain
method-class
methods

The basic call structure inside the initialize method is:

add-method gf method -> gf
compute-method-lookup-function gf domain -> function
compute-discriminating-function gf domain lookup-fn methods -> function

The (generic) function add-method attaches the specified methods to the
generic function and its slots are initialized from the information passed in
initlist and from the results of calling compute-method-lookup-function
and its partner, compute-discriminating-function on the generic func-
tion. Note that these two functions might not be called during the call to
initialize, and that they might be called several times for the generic
function.

The generic function add-method adds a method to the generic function
gf and returns gf as its result. The method will be taken into account when
gf is called with appropriate arguments the next time. New methods may
be defined on add-method for new generic function and method classes. The
default method checks that the domain classes of the method are subclasses
of those of the generic function, that the method is an instance of the generic
function’s method class, and that a method with the same domain is not
already attached to the generic function. An error is signalled if any of
these conditions does not hold.

NOTE — In contrast to CLOS, add-method does not remove a method with
the same domain as the method being added.

If no error occurs, the method is added to the generic function gf. De-
pending on the kind of optimizations employed for generic dispatch, adding
a method may cause the recomputation of the method lookup function and
the discriminating function.

The former computes and returns a function which will be called at
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least once for each domain to select and sort the applicable methods by
the default dispatch mechanism. New methods may be defined for this
function to implement different method lookup strategies. Although only
one method lookup function generating method is provided by the system,
each generic function has its own specific lookup function which may vary
from generic function to generic function.

The latter computes and returns a function which is called whenever the
generic function is called. The returned function controls the generic dis-
patch. Users may define methods on this function for new generic function
classes to implement alternative dispatch strategies. The default method
implements the standard dispatch strategy: the generic function’s methods
are sorted using the function returned by compute-method-lookup-func-
tion, and the first is called as if by call-method, passing the others as the
list of next methods. Note that call-method need not be called directly
for standard generic functions. However, user-defined extensions might
need call-method or apply-method to implement other generic dispatch
strategies. The interfaces of these functions are:

(call-method method next-methods arg∗)
(apply-method method next-methods arg∗ args)

The first calls method with the sequence of arguments arg∗. The argu-
ment next-methods is a list of methods which are used as the applicable
method list for args; it is an error if this list is different from the methods
which would be produced by the method lookup function of the generic
function of method. If method is not attached to a generic function, its
behaviour is unspecified. The next-methods are used to determine the next
method to call when call-next-method is called within method.

apply-method is identical to call-method except that its last argument
is a list whose elements are the other arguments to pass to method. The dif-
ference is identical to that between normal function application and apply.

B.2.6. Low Level Allocation Primitives

The high level allocation construct is the generic function allocate
which takes a class and an initlist as arguments. At level-0, it was spec-
ified just as a function. At level-1 it is generic, and, thus, extensible by
the user. In order to implement new allocation methods portably low level
primitives are necessary. Examples requiring this are persistent objects, or
the change-class functionality, or redefinable classes with automatically
updatable instances, etc. The primitives are defined in such a way that
objects cannot be destroyed unintentionally. The protocol should be both
secure and efficient.

The operations are:
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(primitive-allocate class) → primitive-allocated-object
(primitive-class-of primitive-allocated-object) → class
(primitive-ref primitive-allocated-object index) → value
((setter primitive-class-of) primitive-allocated-object new-class)
((setter primitive-ref) primitive-allocated-object index new-value)

In order to make this interface work, the class initialization protocol is ex-
tended by a function class-instance-size which returns the value com-
puted by the generic function compute-instance-size and stored once
for each class. That means class-instance-size always returns the
same value for a particular class. The default compute-instance-size
method returns the number of local slot descriptions in a class. The func-
tion primitive-allocate uses the result of class-instance-size applied
on its argument to create an object of that size. Thus, there is no way
to create instances of a class with the wrong size. The index passed to
primitive-refmust be a non-negative fixed precision integer smaller than
the corresponding instance size. (setter primitive-class-of) checks
that the results of class-instance-size on the old and the new classes
are equal. Otherwise, an error is signalled. An error is signalled if either of
primitive-class-of, primitive-ref or their setters are applied on ob-
jects not created by primitive-allocate, or if primitive-allocate is
called on a direct instance of a system-defined metaclass.

Thus, due to the above restrictions type inference is safely applicable to
primitive allocated objects.

NOTE—The change-classmodule can be implemented reducing the semantic
difficulties of CLOS.

C. Glossary

This set of definitions, which are be used throughout this definition, is self-
consistent but might not agree with notions accepted in other language
definitions. The terms are defined in alphabetical rather than dependency
order and where a definition uses a term defined elsewhere in this section it
is written in italics. Some of the terms defined here are redundant. Names
in courier font refer to entities defined in the language.

boolean: A boolean value is either false, which is represented by the
empty list—written () and is also the value of nil—or true, which is rep-
resented by any other value than ().

class: A class is an object which describes the structure and behaviour of
a set of objects which are its instances. A class object contains inheritance
information and a set of slot descriptions which define the structure of its
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instances. A class object is an instance of a metaclass. All classes in EuLisp

are subclasses of <object>, and all instances of <class> are classes.

defining form: Any form or any macro expression expanding into a form
whose operator is one of:

defclass, defcondition, defconstant, defgeneric, deflocal,
defmacro, defstruct, defun, or defvar.

direct instance: A direct instance of a class class1 is any object whose
most specific class is class1.

direct subclass: A class1 is a direct subclass of class2 if class1 is a subclass
of class2, class1 is not identical to class2, and there is no other class3 which
is a superclass of class1 and a subclass of class2.

direct superclass: A direct superclass of a class class1 is any class for
which class1 is a direct subclass.

dynamic environment: The inner and top dynamic environment, taken
together, are referred to as the dynamic environment.

function: A function is one of continuation, simple function or generic
function.

generic function: Generic functions are functions for which the method
executed depends on the class of its arguments. A generic function is
defined in terms ofmethods which describe the action of the generic function
for a specific set of argument classes called the method’s domain.

indirect instance: An indirect instance of a class class1 is any object
whose class is an indirect subclass of class1.

indirect subclass: A class1 is an indirect subclass of class2 if class1 is a
subclass of class2, class1 is not identical to class2, and there is at least one
other class3 which is a superclass of class1 and a subclass of class2.

inheritance graph: A directed labelled acyclic graph whose nodes are
classes and whose edges are defined by the direct subclass relations between
the nodes. This graph has a distinguished root, the class <object>, which
is a superclass of every class.
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inherited slot description: A slot description is inherited for a class1 if
the slot description is defined for another class2 which is a direct or indirect
superclass of class1.

initarg: A symbol used as a keyword in an initlist to mark the value of
some slot or additional information. Used in conjunction with make and
the other object initialization functions to initialize the object. An initarg
may be declared for a slot in a class definition form using the initarg slot
option or the initargs class option.

initform: A form which is evaluated to produce a default initial slot value.
Initforms are closed in their lexical environments and the resulting closure
is called an initfunction. An initform may be declared for a slot in a class
definition form using the initform slot option.

initfunction: A function of no arguments whose result is used as the de-
fault value of a slot. Initfunctions capture the lexical environment of an
initform declaration in a class definition form.

initlist: A list of alternating keywords and values which describes some
not-yet instantiated object. Generally the keywords correspond to the ini-
targs of some class.

inner dynamic: Inner dynamic bindings are created by dynamic-let,
referenced by dynamic and modified by dynamic-setq. Inner dynamic
bindings extend, and can shadow, the dynamically enclosing dynamic en-
vironment.

inner lexical: Inner lexical bindings are created by lambda and let/cc,
referenced by variables and modified by setq. Inner lexical bindings extend,
and can shadow, the lexically enclosing lexical environment. Note that
let/cc creates an immutable binding.

instance: Every object is the instance of some class. An instance thus
describes an object in relation to its class. An instance takes on the structure
and behaviour described by its class. An instance can be either direct or
indirect.

instantiation graph: A directed graph the nodes of which are objects
and the edges of which are defined by the instance relations between the
objects. This graph has only one cycle, an edge from <class> to itself. The
instantation graph is a tree and <class> is the root.
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lexical environment: The inner and top lexical environment of a mod-
ule are together referred to as the lexical environment except when it is
necessary to distinguish between them.

metaclass: A metaclass is a class object whose instances are themselves
classes. All metaclasses in EuLisp are instances of <class>, which is an
instance of itself. All metaclasses are also subclasses of <class>. <class>
is a metaclass.

method: A method describes the action of a generic function for a partic-
ular list of argument classes called the method’s domain. A method is thus
said to add to the behaviour of each of the classes in its domain. Methods
are not functions but objects which contain, among other information, a
function representing the method’s behaviour.

method specificity: A domain domain1 is more specific than another
domain2 if the first class in domain1 is a subclass of the first class in
domain2, or, if they are the same, the rest of domain1 is more specific
than the rest of domain2.

multi-method: A method which specializes on more than one argument.

new instance: A newly allocated instance, which is distinct, but can be
isomorphic to other instances.

reflective: A system which can examine and modify its own state is said
to be reflective. EuLisp is reflective to the extent that it has explicit class
objects and metaclasses, and user-extensible operations upon them.

self-instantiated class: A class which is an instance of itself. In EuLisp,
<class> is the only example of a self-instantiated class.

setter function: The function associated with the function that accesses
a place in an entity, which changes the value stored in that place.

simple function: A function comprises at least: an expression, a set of
identifiers, which occur in the expression, called the parameters and the
closure of the expression with respect to the lexical environment in which
it occurs, less the parameter identifiers. Note: this is not a definition of the
class <simple-function>.



AN OVERVIEW OF EuLisp 87

slot: A named component of an object which can be accessed using the
slot’s accessor. Each slot of an object is described by a slot description
associated with the class of the object. When we refer to the structure of
an object, this usually means its set of slots.

slot description: A slot description describes a slot in the instances of
a class. This description includes the slot’s name, its logical position in
instances, and a way to determine its default value. A class’s slot descrip-
tions may be accessed through the function class-slot-descriptions. A
slot description can be either direct or inherited.

slot option: A keyword and its associated value applying to one of the
slots appearing in a class definition form, for example: the accessor key-
word and its value, which defines a function used to read or write the value
of a particular slot.

slot specification: A list of alternating keywords and values (starting
with a keyword) which represents a not-yet-created slot description during
class initialization.

special form: A special form is a semantic primitive of the language. In
consequence, any processor (for example, a compiler or a code-walker) need
be able to process only the special forms of the language and compositions
of them.

specialize: A verbal form used to describe the creation of a more specific
version of some entity. Normally applied to classes, slot-descriptions and
methods.

specialize on: A verbal form used to describe relationship of methods
and the classes specified in their domains.

subclass: The behaviour and structure defined by a class class1 are in-
herited by a set of classes which are termed subclasses of class1. A subclass
can be either direct or indirect or itself.

superclass: A class1 is a superclass of class2 iff class2 is a subclass of
class1. A superclass can be either direct or indirect or itself.

top dynamic: Top dynamic bindings are created by defvar, referenced
by dynamic and modified by dynamic-setq. There is only one top dynamic
environment.
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top lexical: Top lexical bindings are created in the top lexical environment
of a module by

defclass, defcondition, defconstant, defgeneric, defmacro,
defstruct, defun.

All these bindings are immutable. deflocal creates a mutable top-lexical
binding. All such bindings are referenced by variables and those made by
deflocal are modified by setq. Each module defines its own distinct top
lexical environment.


